Рекомендации по ведению мониторинга состояния недр на объектах нефтепродуктового загрязнения (нефтепромыслах, предприятиях по переработке нефти, нефтехранилищах и т.д.). Общие рекомендации по организации экологического мониторинга на месторождении Програм

Экологический мониторинг (ЭМ) - это действенный инструмент оценки существующего санитарно-экологического состояния контролируемой террито­рии, а также прогноза возможного изменения направлений естественных про­цессов, испытывающих воздействие техногенных (антропогенных) факторов. Он необходим для обоснования управленческих решений по обеспечению экологической безопасности персонала, работающего на нефтепромыслах, а так­же для поддержания благополучного состояния ОПС.

Функционирование системы ведомственного ЭМ должно проходить на четырех уровнях: объект - локальный уровень, предприятие - территориальный уровень, регион, отрасль.

При разработке мероприятий по улучшению санитарно-экологической обстановки на территориях нефтедобычи необходимо учитывать латентный (скры­тый) характер действия многих нефтепромысловых источников загрязнения, особенно в начальный период их функционирования. Для таких источников характерна определенная инерционность действия. Ликвидация точечных, оча­говых и линейных источников нефтепромыслового загрязнения сказывается на улучшении санитарно-экологического состояния почв, растительности, по­верхностных и подземных вод спустя определенный промежуток времени. Длительность инерционного периода (например, для подземных вод) зависит от геофильтрационных свойств покровных и других отложений, слагающих зону аэрации, а также от гидрогеологических условий водоносных горизонтов.

Последнее обстоятельство должно определять продолжительность функционирования геоэкологического мониторинга (или части его) после ликвидации загрязняющих нефтепромысловых объектов или нефтепромысла в целом.

Опыт ведущих предприятий, добывающих углеводородное сырье (ОАО "Газпром", "ЛУКОЙЛ" и др.), а также разработки Единой государственной систе­мы ЭМ позволяют сформулировать основную концепцию организации ведом­ственного, или производственного, экомониторинга (ПЭМ). Эта концепция базируется на принципах:

Система должна иметь иерархическую структуру и отражать стадийность жизненного цикла объектов;

Обработка данных ПЭМ на всех этапах - от первичных наблюдений до поддержки принятия решений - должна проводиться по единой информационной технологии, широко использующей аппарат геоинформационных систем (ГИС), а также интерактивные технологии в единой вычислительной среде;

Информационно-измерительная сеть должна охватывать всю совокупность компонентов ОС, т.е. иметь сопряженный характер;

Структура сети должна быть мобильна и адекватна динамике ОПС контролируемой территории;

Алгоритмы обработки измеренных данных должны базироваться на сочетании точечных наблюдений и дистанционной информации, дающих возмож­ность площадной экстраполяции наблюдений;

Система должна не только осуществлять контроль за текущим состоянием ОПС, но и давать возможность проводить ретроспективный анализ и стро­ить прогноз на основе математического моделирования;

Система должна применять методы обработки данных на основе взаимосвязанности процессов в экосистемах;

Система должна обладать оперативностью обмена информацией и представлять ее в удобной форме.

Исследования, проводимые в рамках единой концепции организации ПЭМ, отличаются от режимных наблюдений следующим:

ПЭМ характеризуется целенаправленностью (наличие целевой программы с выходом на конечную цель - управление качеством ОПС);

ПЭМ - это наблюдения, имеющие комплексный характер, они охватывают объекты, цели, при их проведении применяется совокупность различных методов;

ПЭМ базируется на принципах системности с выявлением воздействий производства на компоненты ОС на основе идентификации прямых и обратных связей, существующих в природно-технических системах;

ПЭМ - информационная система, адаптируемая к постоянному обновле­нию и дополнению данных различного рода на основе широкого использо­вания методов создания ГИС.

Принципиально важным является выделение в ПЭМ стадий функционирования объектов добычи нефти - это фоновая стадия строительства, эксплуата­ции, ликвидации и послеэксплуатационная стадия. Каждая из этих стадий имеет свою специфику наблюдений и методов их проведения.

В практике ведения ЭМ разделяют два принципиальных подхода. Это собственно мониторинг ОС как система наблюдений, оценки и прогноза состоя­ния ОПС и мониторинг источников воздействия на нее. Необходимость второ­го подхода обусловлена тем, что, не зная динамики воздействия источников, нельзя дать оценку реакции компонентов ОС на эти воздействия. В соответ­ствии с системными принципами следует также учитывать обратные связи, т.е. воздействие среды на инженерные объекты. Несоблюдение этого положе­ния многими добывающими предприятиями приводит к тому, что при органи­зации и функционировании ведомственного ЭМ отслеживаются только выбро­сы, сбросы и образование твердых отходов, но не изменения в ОПС, вызванные их действием.

Другой типичный недостаток связан с существованием многих видов мониторинга ОПС (атмосферы, гидросферы, почв и т.д.), которые проводятся по мере требования контролирующих органов. Часто такие исследования не взаи­моувязаны в пространстве и во времени, имеют различные методические ос­новы проведения, включают ограниченное число параметров с применением несертифицированных приборов, неаттестованных методик и с привлечением неаккредитованных экоаналитических лабораторий. Ценность результатов про­водимых при таком подходе исследований невелика, поскольку официально они могут быть оспорены в любой инстанции.

Рассмотрим опыт создания геоэкологического мониторинга геотехнологических систем, разработанного сотрудниками "Надымгазпрома" , с некото­рыми изменениями для лучшей адаптации к деятельности объектов добычи нефти. Общая структура мониторинга нефтегазодобывающих предприятий может быть представлена в виде следующей схемы (рис. 7.1).

Рис.7.1. Общая структура организации ЭМ нефтегазодобывающего предприятия (по )

Как указывалось выше, ЭМ является системой и работает только тогда, ког­да является объектом управления деятельностью предприятия. Конечная цель ЭМ - достижение нормативных значений воздействия на ОПС, что реализуется устранением критических ситуаций в производственных процессах. С уче­том необходимости оперативного принятия решений выделяется 5 блоков прин­ципиальной схемы ЭМ (рис. 7.2).

Рис.7.2. Принципиальная бок-схема экологического мониторинга

Однако реализация этой, казалось бы, простой схемы - достаточно слож­ный процесс, требующий значительного интеллектуального труда и матери­альных вложений. Организация системы ПЭМ наиболее эффективна при одновременном создании геоинформационных систем предприятия, под которыми можно понимать комплекс программного и аппаратного обеспечения, позволя­ющий поддерживать связь между математическим описанием территории с присущими ей природными особенностями и слоями техногенной нагрузки .

Для принятия эффективных решений по управлению нефтегазодобываю­щими предприятиями необходимо иметь полную и достоверную информацию:

По всем технологическим комплексам добычи, сбора, подготовки, транспортировки и переработки добываемых нефти и газа;

По ЭМ источников техногенного воздействия и компонентов ОПС в зоне влияния предприятий;

По текущему состоянию используемого оборудования, инженерных коммуникаций и объектов строительства.

Создание систем управления качеством ОПС в соответствии с действую­щим законодательством и стандартами серии ИСО 14000 должно базировать­ся, кроме перечисленных информационных потоков, на четком методическом подходе в цепочке "сбор информации - реализация управленческих решений". Один из таких подходов (по ) представлен на рис. 7.3.

Рис.7.3. Методический подход к выполнению геоэкологического мониторинга для обеспечения экологической безопасности газопромысловых объектов

Следуя предлагаемой технологии проведения геоэкологического мониторин­га и использования его результатов, информацию о состоянии ОС и инженерных сооружений собирают на основе наземной сети наблюдений и дистанци­онных методов. Далее происходит накопление и обработка данных раздельно для каждого компонента ОПС с целью проведения диагностики состояния геотехнологической системы (ГТС). Диагностика проводится на основе следую­щих показателей, характеризующих антропогенные изменения:

Степень загрязнения ОПС по отдельным компонентам и на основе интегральных показателей с использованием значений концентраций химичес­ких элементов в сопряженных средах - как миграционных, так и накапли­вающихся;

Степень нарушенности почвенно-растительного покрова и динамики его восстановления;

Характер изменения условий естественного (поверхностного и подземного) стока;

Пораженность территории экзогенными геологическими процессами;

Характер изменения геологической среды (в том числе и многолетнемерзлых пород), радиационной и геодинамической обстановки;

Идентификация состояния компонентов ОПС по категориям состояний (экологическая норма, риск, кризис, бедствие) и взаимоувязка эколого-геологических условий на основании оцениваемых параметров состояния ПС;

Оценка состояния инженерных объектов и их взаимодействия с компонентами ПС.

Таким образом, производится оценка текущей экологической ситуации в пределах всей ГТС. При этом решаются следующие задачи:

Определение соответствия фактических нарушений ПС проектным (нормативным) уровням воздействий;

Обнаружение сверхнормативных воздействий;

Выявление потенциальных аварийно опасных элементов инженерных сооружений;

Выявление зон экологического риска, в которых степень преобразования ПС превышает критические значения и пределы устойчивости экосистем;

Прогноз тенденции негативных изменений компонентов ОПС и деградации инженерных сооружений.

Для определения степени устойчивости экосистем наиболее часто приме­няют балльные оценки с привлечением экспертов. Экспертные оценки строят­ся по форме: Объект + Воздействие - Изменение. На их основе составляют матрицу, в которой по горизонтали указывают объекты (компоненты ОПС), а по вертикали - виды воздействий. В клетках на пересечении указываются происходящие изменения в природных компонентах. При этом оценка всего мно­гообразия техногенных воздействий на экосистемы сводится к оценкам меха­нического воздействия (нарушение структуры почв, микрорельефа, изменение растительности, гидрогеологических условий и др.) при строитель­ных и буровых работах. Геохимическое воздействие оценивают по данным мо­ниторинга источников воздействия и содержанию элементов в средах. В каждой экосистеме определяют комплекс ведущих факторов, которым присваивается качественный или количественный показатель на основе совместного анализа всей группы факторов с весовой оценкой их роли. ГТС можно отнести к одному из классов устойчивости - от крайне неустойчивых до устойчивых. Один из подходов к оценке устойчивости на основе ландшафтно-фациальных показате­лей изложен в . Предлагаемая методика адаптирована к специфике воздей­ствия нефтегазодобывающего производства и прошла апробацию на ряде мес­торождений Западной Сибири.

На базе проведенных оценок текущих экологических ситуаций разрабатывается комплекс специальных мероприятий, направленных на стабилизацию ПС и обеспечение нормальной работы инженерных сооружений. При этом уп­равленческие решения сводятся к следующим генеральным условиям:

Оптимизация сложившейся системы природопользования;

Корректировка существующего комплекса природоохранных мероприятий;

Разработка специальных инженерных мер по защите ОПС;

Изменение действующих технологических схем, технических решений и конструкционных особенностей эксплуатируемых объектов.

Рассмотренный подход к созданию экологического мониторинга ГТС в криолитозоне сформировался на основе опыта более чем 20-летней эксплуатации месторождения газа Медвежье. В результате были осуществлены его реконст­рукция и техническое перевооружение.

Наблюдательная сеть экологического мониторинга в процессе усиления техногенной нагрузки при необходимости может быть расширена или уплотнена в зависимости от конкретных обстоятельств. Ее корректировка проводится по согласованию с природоохранными и другими контролирующими органами. Она должна базироваться на материалах комплексного и всестороннего анали­за данных, получаемых в процессе мониторинга и проведения ГЭИК.

Локальная сеть мониторинга включает подсистемы наблюдений и первич­ной обработки данных, подсистему обобщения, научно-информационного ана­лиза и передачи полученных данных субъекту природопользования и контролирующим региональным ведомствам, отвечающим за охрану ПС. Она также включает подсистему планирования природоохранной деятельности и обеспе­чения функционирования экологического мониторинга. Это соответствует кон­цепции построения ЕГСЭМ.

Разработчик нефтяных месторождений обязан в конце каждого года представлять в контролирующие органы информационный отчет об экологичес­ком состоянии охраняемых эксплуатируемых природных объектов, содержа­щий обоснованную оценку происшедших изменений, а также прогноз санитарно-экологического состояния подведомственной территории на бли­жайшую перспективу. Результаты ежегодных обобщений материалов эколо­гических наблюдений и опробования водопунктов являются основанием для оценки эффективности мониторинга, необходимости его продления и кор­ректировки программы предстоящих исследований и мероприятий по улуч­шению экологической ситуации.

Многие нефтяные месторождения России находятся на поздней стадии разработки, когда возрастает доля остаточной нефти и меняется структура запасов, - в залежах остаются огромные объемы трудноизвлекаемой нефти.

Если в 70-е годы нефтеотдача в целом по стране была доведена до 50%, то в последующем она постепенно снизилась до 30-40%, причем по нефтяным оторочкам газовых залежей она достигает всего 10%.

Поэтому современное развитие добывающей промышленности в значительной мере связано с использованием интенсивных технологий эксплуатации нефтяных месторождений.

При вовлечении в активную разработку трудноизвлекаемых запасов нефти на базе физико-химических воздействий повышается роль оперативной информации о количестве и качестве пластовых флюидов.

На основе этой информации решаются задачи оптимизации разработки нефтегазовых залежей, включая интенсификацию добычи , прогноз и увеличение конечной нефтеотдачи, оценку эффективности физико-химических воздействий на пласт и призабойную зону скважины.

Степень извлечения углеводородов из залежи зависит от свойств минерального скелета, флюидов и физико-химических особенностей взаимодействия между ними. Как известно, нефть в пластовых условиях не является однородной жидкостью.

Поэтому различные фракции нефти фильтруются в породе с различной скоростью.

В процессе разработки нефтегазовой залежи происходит изменение пространственного распределения ее физико-химических свойств из-за взаимодействия различных фаз фильтрационного потока со скелетом породы.

Для повышения достоверности прогноза по нефтеизвлечению необходима оперативная информация о структуре и подвижности пластовых флюидов.

Информация об изменении пространственного распределения реологических характеристик нефтей (структурной неоднородности, вязкости, плотности) позволяет контролировать состояние разрабатываемой залежи и принимать оптимальные управленческие решения с целью повышения текущей и накопленной добычи.

Эту информацию дает возможность получить технология оперативного мониторинга разработки нефтяных месторождений, созданная на базе техники и методики ядерного магнитного резонанса (ЯМР).

Особенности технологии для разных типов нефтяных залежей

Наряду с фильтрационно-емкостными свойствами породы на извлекаемость нефти из пласта существенное влияние оказывают реологические характеристики нефти, в особенности ее вязкость.

Предпосылкой эффективности применения метода ЯМР для изучения нефтяных залежей является уникальная чувствительность на молекулярном уровне к подвижности порового флюида, что позволяет различать подвижную и вязкую нефть.

В отличие от традиционных лабораторных методов исследования нефтей метод ЯМР позволяет определять не только общую вязкость, но и вязкость отдельных фаз (составляющих компонентов) нефти.

Спектральное распределение времен релаксации, полученное при ЯМР исследовании образца нефти.

Спектральным составляющим с большими временами релаксации соответствует компонента нефти, обладающая меньшей вязкостью (большей подвижностью или текучестью).

Это позволяет оценивать дополнительный (к текучести) показатель подвижности нефти - мобильность, который оказывает определяющее влияние на извлекаемость нефти из пласта.

Мобильность нефти оценивается через обратную величину вязкости компоненты с большей подвижностью с учетом ее доли в общем составе нефти.

При этом метод ЯМР дает возможность определять реологические свойства нефти и без ее извлечения из породы.

Мониторинг разработки месторождений нефти в соответствии с созданной технологией проводится по данным контроля физико-химических параметров нефти и воды с помощью ядерно-магнитных исследований отбираемых проб жидкости.

При этом извлеченный продукт используется в качестве источника и носителя объектовой информации о составе и свойствах продуктивного пласта и пластовых углеводородов и вод.

Методика структуризации остаточной нефти по типам и характеру подвижности позволяет исследовать распределение как прочно связанной остаточной нефти, так и подвижной ее компоненты.

Получаемая информация о распределении подвижной остаточной нефти позволяет обоснованно подходить к планированию технологии ее извлечения.

В зависимости от типа месторождения нефти созданная ЯМР технология оперативного мониторинга разработки решает задачи, которые имеют определенные особенности.

Значительное парафиносодержание нефтей разрабатываемых залежей заводнением ухудшает их состав и свойства и имеет определяющее значение при формировании и разработке остаточной нефтенасыщенности объекта, когда происходит ее окисление, утяжеление и увеличение вязкости.

Кроме того, на нефтяных месторождениях с повышенным содержанием парафинов при определенных режимах разработки могут создаваться предпосылки к возникновению и развитию асфальтеносмолопарафиновых образований (АСПО).

При этом адсорбция АСПО на поверхности порового пространства снижает величину нефтепроницаемости пласта, что обусловливает уменьшение продуктивности скважин. Для предупреждения развития негативных процессов, оптимизации разработки и увеличения конечного нефтеизвлечения пластов проводится систематическое изучение реологических характеристик объектовых нефтей и определяется содержание в них парафинов посредством ЯМР исследований извлекаемого продукта.

Месторождения высоковязких нефтей (ВВН) рассматриваются в качестве перспективной базы для развития нефтедобывающей отрасли в ближайшие годы.

Россия обладает значительными запасами ВВН, которые составляют около 55% от общих запасов.

Для увеличения нефтеотдачи на месторождениях высоковязких нефтей наиболее часто используют тепловые методы.

При тепловом воздействии за счет вводимого в пласт тепла происходит изменение внутренней энергии пластовой системы.

Это приводит к термическому расширению нефти и снижению ее динамической вязкости, что положительно влияет на снижение остаточной нефтенасыщенности и повышение нефтеотдачи.

При разработке месторождений тяжелой нефти термическими методами обычно 75% затрат приходится на генерацию пара.

Минимизация суммарного отношения использованного пара к объему добытой нефти является одной из первоочередных задач усовершенствования технологии добычи тяжелых углеводородов.

Оценка соотношения содержания подвижных и высоковязких компонентов в пластовой нефти, получаемая с помощью ЯМР исследований, позволяет оптимизировать систему термических воздействий на коллектор с целью максимально возможного извлечения продукта.

Примеры применения ЯМР технологии мониторинга разработки нефтяных месторождений в различных регионах России

Обычно вязкость пластовых нефтей оценивают по очень ограниченному числу отбираемых образцов. При этом используют простые схемы распределения значений вязкости по залежи. В реальной практике значения вязкости нефтей

имеют более сложное пространственное распределение.

Проведенные систематические ядерно-магнитные исследования свойств добываемых нефтей Ван-Еганского месторождения (Западная Сибирь) показали, что их плотностная характеристика меняется в широких пределах (0,843-0,933 г/см3), а вязкость - почти в 50 раз.

При исследовании образцов нефти из пластов БВ8-2, ПК12 и А1-2, синхронно отобранных из разных скважин месторождения выявлена внутрипластовая гетерогенность реологических характеристик нефтей.

При площадном мониторинге продукции добывающих скважин выявлена определенная приуроченность легких и подвижных нефтей (с плотностью 0,843 - 0,856 г/куб. см и с вязкостью 4,4 - 8,3 мПа.с) к южной части (кусты №№ 7 и 10) месторождения, тогда как из скважин, расположенных в центральной его части (кусты №№ 37 - 49), извлекаются высоковязкие (до 215 мПа.с) нефти повышенной плотности (до 0,935 г/см. куб).

Временной мониторинг реологических характеристик добываемой продукции в процессе разработки месторождения, показывает, что даже в пределах синхронной однокустовой эксплуатации 2-х и более добывающих скважин отмечается различное качество добываемых углеводородов.

Так, при относительно стабильной вязкости (прирост менее 6,7 %) извлеченной из скважины № 1008 (куст 90) нефти в процессе 6-ти суточной эксплуатации вязкость более плотной нефти из скважины № 1010 того же куста изменилась синхронно почти на 57 %.

Получаемая в результате площадного и временного мониторинга информация об изменении свойств пластовых флюидов позволяет контролировать состояние разрабатываемой залежи и принимать оптимальные управленческие решения с целью повышения текущей и накопленной добычи.

На месторождениях с повышенным содержанием парафинов (Республика Коми) для контроля рисков возникновения АСПО используется температура насыщения нефти парафином. При снижении температуры нефти до величины температуры насыщения нефти парафином и менее начинается процесс формирования микрокристаллов АСПО.

На первой стадии образования АСПО происходит зарождение центров кристаллизации и рост кристаллов, на второй стадии - осаждение мелких кристаллов на поверхности твердой фазы, на третьей осаждение на парафинированную поверхность более крупных кристаллов.

При этом асфальтены выпадают и образуют плотный и прочный осадок, в то время как смолы только усиливают действие асфальтенов.

Анализ основных причин образования АСПО позволяет разделить их на две группы.

К первой относятся те, которые характеризуют компонентный состав и физико-химические свойства добываемых нефтей и их изменения в процессе разработки месторождения.

Ко второй относятся те причины, которые определяют тепловое состояние пластов в процессе их эксплуатации.

В связи с этим для предупреждения развития негативных процессов в разрабатываемой нефтегазовой залежи важная роль отводится мониторингу ее термодинамического состояния и систематическому исследованию реологических характеристик нефти.

На рисунке представлен пример карты подвижности нефтей по одному из пластов нефтяного месторождения, которая построена по результатам ЯМР исследований отбираемых проб продукта. Распределение зон высоких и низких показателей подвижности - мобильности извлекаемой нефти позволяет оценить более и менее благоприятные участки залежей для фильтрации нефти в поровых каналах.

В соответствии с этими особенностями закономерно распределяются по площади залежи эксплуатационные участки и скважины повышенной и пониженной продуктивности.

Поскольку температура насыщения нефти парафинами зависит от содержания парафина в нефти, была разработана специальная методика проведения ЯМР исследований отбираемых проб продукта, позволяющая определять содержание АСПО.

Пример карты содержания АСПО в нефтях, построенной по данным ЯМР исследований проб продукта, отобранных в процессе эксплуатации одного из пластов нефтяной залежи.

Проведенные ЯМР исследования показали соответствие температур насыщения нефтей парафинами температурам застывания нефтей.

Это позволяет использовать температуры застывания нефтей, определяемые посредством систематических ЯМР исследований отбираемых из объектовых пластов разрабатываемого месторождения проб продукта, с целью оценки возможного возникновения в них АСПО.

Исследования нефтей из скважин различных эксплуатационных объектов, расположенных по определенным профилям, показали, что они различаются по температурам застывания и плавления в широких пределах (12 - 43оС), что свидетельствует об их разном составе и содержании основных компонентов (парафины, асфальтены, смолы) в надмолекулярных образованиях АСПО.

Проявление температурного гистерезиса на профильных термограммах обусловлено, по-видимому, влиянием кристаллической решетки парафиновых структур в этих нефтях, а его величина - их строением и молярным весом.

Сравнение пластовых и нефтяных термограмм позволяет выдавать рекомендации по поддержанию необходимых значений пластового и забойного давлений с целью снижения рисков возникновения АСПО.

Основные риски АСПО связаны с призабойными зонами скважин, где забойное давление оказывается меньше оптимальной величины.

В этих случаях происходит интенсивное выделение газа из нефти, что приводит к ее охлаждению и, следовательно, к выпадению из нефтяного раствора парафина в составе АСПО. Это вызывает последующую кольматацию пор, а также уменьшение проницаемости коллектора вследствие выделения свободного газа, и к усилению неньютоновских свойств нефти.

Основной целью использования ЯМР исследований вязких и высоковязких нефтей пермокарбоновой залежи (ПКЗ) Севера Европейской части было повышение нефтеизвлечения посредством рационального регулирования геолого-технических мероприятий на базе данных систематического изучения добываемой продукции - мониторинга текущей информации о состоянии объектов.

Данные ЯМР исследований позволяют оценить соотношение содержания подвижных и высоковязких компонентов в пластовой нефти, что необходимо для планирования системы дополнительных воздействий на коллектор с целью максимально возможного извлечения продукта.

Системный анализ результатов мониторинга состава и свойств извлеченных нефтей эксплуатационных объектов (ЭО) показал, что они характеризуются повышенными реологическими величинами.

Из объектовых скважин, расположенных по профилю Запад - Восток, в основном извлекаются вязкие нефти (около 125 мПа.с), тогда как из скважин, пробуренных по направлению Юг - Север, извлекаются нефти с широким диапазоном вязкостей (50-195 мПа.с), в том числе высоковязкие нефти извлекаются преимущественно в северной части профиля.

Полученные результаты исследований показали, что рациональная разработка северного ЭО залежи по профилю Юг - Север является более сложной задачей, что обусловливает дифференцированный подход к технико-промысловым мероприятиям на различных его участках.

Для повышения объектовой добычи и коэффициента извлечения нефти очевидно более предпочтительной является целенаправленная тепловая обработка забоев добывающих скважин на южном и центральном участках этого профиля.

В результате площадного оконтуривания главных эксплуатационных блоков залежи по реологическим показателям в центральной части северного ЭО в выделен перспективный участок добычи относительно подвижной нефти, которая может быть извлечена при оптимальном управлении его разработкой путем паротеплового воздействия.

На основе данных систематических ЯМР исследований отбираемого продукта из эксплуатационных скважин получают информацию не только для оптимизации разработки залежи, включая выбор способа воздействия, но и для контроля эффективности этого воздействия.

Рассмотрим изменения во времени спектральных характеристик времен релаксации нефтей, отобранных в одной из эксплуатационных скважин, после паротеплового воздействия (ПТВ).

Полученные спектры показывают существенное увеличение доли компонент нефти большей подвижности после воздействия и постепенное уменьшение их со временем.

Опыт применения технологии оперативного мониторинга разработки месторождений нефти на основе ЯМР исследований показывает:

1. Данные ЯМР исследований отбираемых проб продукта позволяют классифицировать залежи по типу добываемых нефтей, что дает возможность выбирать наиболее оптимальные способы разработки.

2. В результате проведения петрофизических ЯМР исследований получают информацию, необходимую для моделирования разрабатываемых пластов, включая оценку остаточной нефти по типу и характеру подвижности.

3. В отличие от традиционных лабораторных методов по данным ЯМР исследований определяют не только общую вязкость, но и вязкость отдельных фаз (составляющих компонентов) нефти, что позволяет оценивать дополнительный (к текучести) показатель подвижности нефти - мобильность, который оказывает определяющее влияние на извлекаемость нефти из пласта.

4. Результаты моделирования и систематических ЯМР исследований отбираемого продукта позволяют провести классификацию нефтяных пластов по их потенциальной продуктивности.

5. На месторождениях с повышенным содержанием парафинов данные систематического изучения реологических характеристик объектовых нефтей и определения концентрации парафинов, полученные посредством ЯМР исследований извлекаемого продукта, дают возможность предупреждать возникновение и развитие асфальтеносмолопарафиновых образований (АСПО).

6. При проведении ЯМР исследований на месторождениях высоковязких нефтей получают информацию о соотношении содержания подвижных и высоковязких компонентов в пластовой нефти, которая необходима для планирования системы дополнительных воздействий на коллектор с целью максимально возможного извлечения продукта.

7. Получаемая информация о реологических характеристиках пластовых углеводородов, о характере и интенсивности взаимного влияния нефтей и вмещающих их пород-коллекторов позволяет выбирать наиболее эффективные технологии воздействия и оптимальные режимы разработки.

8. Мониторинг эксплуатации нефтяной залежи на основе перманентных ЯМР исследований отбираемого продукта позволяет оценивать эффективность применяемой технологии воздействия с целью повышения нефтеотдачи.

Созданная технология оперативного мониторинга разработки месторождений нефти базируется на программно-управляемом аппаратурно-методическом комплексе (АМК) петрофизических ЯМР исследований каменного и флюидного материала.

В составе АМК используется ЯМР релаксометр, который входит в Госреестр средств измерений.

Литература

1. Белорай Я.Л., Кононенко И.Я., Чертенков М.В., Чередниченко А.А. Трудноизвлекаемые ресурсы и разработка залежей вязких нефтей. «Нефтяное хозяйство», № 7, 2005 г.

2. Оперативный мониторинг качества вязких и высоковязких нефтей и битумов на поздней стадии разработки месторождений. А.М. Блюменцев, Я.Л. Белорай, И.Я. Кононенко. В материалах Международной научно-практической конференции: «Повышение нефтеотдачи пластов на поздней стадии разработки месторождений и комплексное освоение высоковязких нефтей и битумов» - Казань: Изд-во «Фэн», 2007.

3. Михайлов Н.Н., Кольчицкая Т.Н. Физико-геологические проблемы остаточной нефтенасыщенности. М., Наука. 1993.

4. Муслимов Р.Х., Мусин М.М., Мусин К.М. Опыт применения тепловых методов разработки на нефтяных месторождениях Татарстана. - Казань: Новое Знание, 2000. - 226 с.

5. Патент на изобретение № 2386122 Способ и устройство для мониторинга разработки нефтяных залежей. 25.01.2008 г. Авторы: Белорай Я.Л., Кононенко И.Я., Сабанчин В.Д., Чертенков М.В.

6. Блюменцев А.М., Белорай Я.Л., Кононенко И.Я. Применение геоинформационных технологий при разведке и разработке трудноизвлекаемых запасов нефти. Доклад на конференции «Геология, разработка и эксплуатация нефтяных месторождений с трудноизвлекаемыми запасами» (НТО нефтяников и газовиков им. акад. И.М. Губкина с 18 по 21 февр. 2008 г.)

1

В последнее десятилетие все большее признание получила идея о существовании взаимного влияния здоровой окружающей среды и устойчивого экономического развития. В это же время в мире происходили крупные политические, социальные и экономические изменения, по мере того, как многие страны начинали осуществление программ радикальной структурной перестройки своей экономики. Таким образом, изучение влияния на окружающую среду общеэкономических мероприятий стало актуальной проблемой, имеющей серьезное значение и требующей скорейшего решения. Экономическое развитие России в значительной степени зависит от топливно-энергетического сектора на основе углеводородного сырья. Принятая правительством России в 2009 году «Энергетическая стратегия России до 2030 года» предусматривает сохранение в среднесрочной перспективе уровня добычи и транспортировки на экспорт сырой нефти в существующих сегодня объемах и определенный рост добычи природного газа. В процессе освоения нефтяных и газовых месторождений наиболее активное воздействие на природную среду осуществляется в пределах территорий самих месторождений, трасс линейных сооружений (в первую очередь магистральных трубопроводов), в ближайших населенных пунктах (городах, поселках). Такие нарушения, даже будучи временными, приводят к сдвигам в тепловом и влажном режимах грунтовой толщи и к существенному изменению ее общего состояния, что обуславливает активное, часто необратимое развитие экзогенных геологических процессов. Добыча нефти и газа приводит также к изменению глубоко залегающих горизонтов геологической среды. Нарушения окружающей среды, обусловленные изменением инженерно-геологической обстановки при добыче нефти и газа, возникают, по существу, везде и всегда. Избежать их полностью при современных методах освоения невозможно. Поэтому главная задача состоит в том, чтобы свести к минимуму нежелательные последствия, рационально используя природные условия.

экологические риски

арктический шельф

вечная мерзлота

попутный нефтяной газ

геологическая среда

месторождение

углеводородное сырье

полезные ископаемые

топливно-энергетический сектор

1. Богоявленский В.И., Лаверов Н.П. Стратегия освоения морских месторождений нефти и газа Арктики // Морскойсборник. М.: ВМФ, 2012. № 6. С. 50–58.

2. Богоявленский В.И. Нефтегазодобыча в Мировом океане и потенциал российского шельфа. ТЭК стратегии развития. М., 2012. № 6. С. 44–52.

3. Богоявленский В.И. Углеводородные богатства Арктики и Российский геофизический флот: состояние и перспективы // Морской сборник. М.: ВМФ, 2010. № 9. С. 53–62.

4. Воробьев Ю.Л., Акимов В.А., Соколов Ю.И. Предупреждение и ликвидация аварийных разливов нефти и нефтепродуктов. М.: Ин-октаво, 2005. 368 с.

5. Лаверов Н.П., Дмитриевский А.Н., Богоявленский В.И. Фундаментальные аспекты освоения нефтегазовых ресурсов Арктического шельфа России // Арктика: экология и экономика. 2011. № 1. С. 26–37.

6. Макогон Ю.Ф. Природные газовые гидраты: распространение, модели образования, ресурсы // Российский химический журнал. 2003. Т. 47. № 3. С. 70–79.

7. Теория и методология управления конкурентноспособностью бизнес-систем: Монография – («Научная мысль-Менеджмент») / Баронин С.А., Семеркова Л.Н. и др. М.: Инфра-М, 2014. 329 с.

Введение

На территории страны сосредоточено около 6 % всех мировых разведанных запасов нефти и 24 % - природного газа.

К настоящему времени экстенсивная эксплуатация нефтегазовых месторождений нанесла огромный ущерб окружающей среде России (в том числе загрязнение в связи с нефтеразливами и сжиганием попутных нефтяных газов), в местах традиционной добычи (в первую очередь в Западной Сибири) и несет новые риски и угрозу в связи с развитием проектов на морском шельфе.

Предмет исследования - влияние нефтяных и газовых загрязнений на окружающую среду.

Цель исследования - изучение взаимодействия и влияния нефтяных и газовых месторождений на окружающую среду.

Материал и методы исследования

Несмотря на то, что в последние годы число крупных аварий в России уменьшилось, общее количество аварийных ситуаций и прорывов в первую очередь на промысловых трубопроводах исчисляется тысячами, нефтегазовая отрасль страны является мировым лидером по объемам сжигания попутного нефтяного газа (ПНГ), а новые проекты сегодня развиваются в особо сложных природно-климатических условиях (вечная мерзлота, арктический шельф), что существенно повышает экологические риски.

Особо следует остановиться на возможных необратимых деформациях земной поверхности в результате извлечения из недр нефти, газа и подземных вод, поддерживающих пластовое давление. В мировой практике достаточно примеров, показывающих, сколь значительным может быть опускание земной поверхности в ходе длительной эксплуатации месторождений. Перемещения земной поверхности, вызываемые откачками из недр воды, нефти и газа, могут быть значительно большими, чем при тектонических движениях земной коры.

Неравномерно протекающее оседание земной поверхности часто приводит к разрушению водопроводов, кабелей, железных и шоссейных дорог, линий электропередач, мостов и других сооружений. Оседания могут вызывать оползневые явления и затопление пониженных участков территорий. В отдельных случаях, при наличии в недрах пустот, могут происходить внезапные глубокие оседания, которые по характеру протекания и вызываемому эффекту мало отличимы от землетрясений.

Начало работ по разведке и добыче в Арктике повышает вероятность разлива нефти с морских нефтедобывающих платформ, из трубопроводов, резервуаров для хранения нефтепродуктов, а также в результате операций по отгрузке нефти. В то же время в Арктике в результате изменения морских ледовых условий открываются новые навигационные маршруты. Для существующих сегодня судоходных маршрутов это означает более плотное движение судов в течение более продолжительного навигационного периода. Новые морские пути будут создавать судоходные риски и связанные с ними риски нефтяных разливов.

Большая часть технологий, предлагаемых для ликвидации нефтяных разливов в Арктике, - адаптированные варианты тех, что обычно используются в регионах умеренного климата на открытой воде и суше, и они должны быть проверены на практике, прежде чем будет принято решение об их применении.

Природно-климатические условия Арктики являются очевидным фактором снижения эффективности большинства технологий по ликвидации нефтяных разливов. Типичные арктические условия, влияющие на операции по борьбе с разливами, включают в себя наличие различных видов морского льда, экстремально низкие температуры, ограниченную видимость, сильное волнение на море и ветер. Эти условия существенно снижают эффективность технологий и систем ликвидации разливов.

Любая разработка природных ресурсов в Арктике в течение ближайших десятилетий будет вестись в ситуации значительных рисков. Несмотря на то, что сокращение площади морского льда сделает этот район более доступным в долгосрочной перспективе, непредсказуемые краткосрочные изменения будут представлять серьезные проблемы для разработки планов мероприятий на случай чрезвычайных обстоятельств.

Не только арктические моря пользуются особым вниманием нефтедобывающих компаний. Охотское море является одним из наиболее богатых водными биоресурсами и обеспечивает 60 % объема рыбного промысла России. Однако области высокой биологической продуктивности и традиционного рыболовства нередко совпадают с зонами высокой нефтегазоносности морского шельфа.

Активное освоение углеводородных запасов ведется сейчас на шельфе Сахалина. Роснефть планирует начать освоение нефтегазовых месторождений на магаданском шельфе, а «Газпром» - на Западно-Камчатском шельфе. Предполагаемые ресурсы составляют всего несколько процентов от общероссийских запасов нефти, а их освоение поставит под угрозу будущее целой трети рыбного богатства страны, то есть продовольственную безопасность страны. Существует угроза, что рыбопродукция с Камчатки перестанет считаться экологически чистой, ускорится ее вытеснение с рынков, снизится инвестиционная привлекательность рыбной отрасли и туризма.

Таким образом, дальнейшую реализацию новых проектов следует отложить до того времени, когда новые технологии позволят осваивать месторождения без нанесения ущерба уникальным природным богатствам и создавать в наиболее ценных для сохранения морских биоресуров акваториях, например, на Западно-Камчатском шельфе, зоны, закрытые для нефтедобычи и транпортировки.

Предприятия по добыче и переработке газа загрязняют атмосферу углеводородами, главным образом в период разведки месторождений (при бурении скважин). Иногда эти предприятия, несмотря на то, что газ экологически чистое топливо, загрязняют открытые водоемы, а также почву.

Природный газ отдельных месторождений может содержать весьма токсичные вещества, что требует соответствующего учета при разведочных работах, эксплуатации скважин и линейных сооружений. Так, в частности, содержание сернистых соединений в газе нижней Волги настолько велико, что стоимость серы как товарного продукта, получаемого из газа, окупает затраты на его очистку. Это является примером очевидной экономической эффективности реализации природоохранной технологии.

На участках с нарушенным растительным покровом, в частности, по трассам дорог, магистральных газопроводов и в населенных пунктах, увеличивается глубина протаивания грунта, образуются сосредоточенные временные потоки и развиваются эрозионные процессы. Они протекают очень активно, особенно в районах песчаных и супесчаных грунтов. Скорость роста оврагов в тундре и лесотундре в этих грунтах достигает 15-20 м в год. В результате их формирования страдают инженерные сооружения (нарушение устойчивости зданий, разрывы трубопроводов), необратимо меняется рельеф и весь ландшафтный облик территории.

Состояние грунтов не менее существенно изменяется и при усилении их промерзания. Развитие этого процесса сопровождается формированием пучинных форм рельефа. Скорость пучения при новообразовании многолетнемерзлых пород достигает 10-15 см в год. При этом возникают опасные деформации наземных сооружений, разрыв труб газопроводов, что нередко приводит к гибели растительного покрова на значительных площадях.

Загрязнение приземного слоя атмосферы при добыче нефти и газа происходит также во время аварий, в основном природным газом, продуктами испарения нефти, аммиаком, ацетоном, этиленом, а также продуктами сгорания. В отличие от средней полосы, загрязнение воздуха в районах Крайнего Севера при прочих равных условиях оказывает более сильное воздействие на природу вследствие ее пониженных регенерационных способностей.

В процессе освоения нефтегазоносных северных районов наносится ущерб и животному миру (в частности, диким и домашним оленям). В результате развития эрозионных и криогенных процессов, механического повреждения растительного покрова, а также загрязнения атмосферы, почв и т. п. Происходит сокращение пастбищных площадей.

Среди наиболее актуальных и острых проблем в России, наряду с нефтеразливами из трубопроводных систем - сжигание ПНГ на факелах.

Весь мир впечатляют объемы сжигания ПНГ в нашей стране и их негативное воздействие на окружающую среду и энергорасточительность. По разным оценкам, ежегодно сжигается 20-35 млрд кубических метров газа, что сопоставимо с энергопотреблением всей Москвы. Наибольшие объемы сжигаются в «нефтегазовой житнице» - Ханты-Мансийском автономном округе, с ним уже практически сравнялась Восточная Сибирь, ухудшаются показатели в Ямало-Ненецком автономном округе, Республике Коми и Ненецком автономном округе.

С 2009 года Всемирный фонд дикой природы (WWF) России ведет общественную кампанию по прекращению сжигания ПНГ. Данные нефтяных компаний по объемам добычи и использования ПНГ за предыдущие годы ясно показывают лидеров и аутсайдеров по использованию ПНГ.

Таблица 1

Динамика роста объемов производства ПНГ в 2006-2011 гг. в нефтегазовых компаниях, ведущих свою деятельность на территории России, млрд м 3 (на основе данных, предоставленных компаниями, а также взятых из публичной отчетности)

Компания

Объем производств ПНГ, млрд, м 3

Уровень рационального использования ПНГ, %

Роснефть

Сургутнефтегаз

Газпром нефть

Славнефть

Татнефть

Башнефть

Русснефть

* Данные представлены компаниями в соответствии с запросом.

** Информация отсутствует.

Оценивая динамику добычи ПНГ крупнейшими нефтегазовыми компаниями России, следует отметить ее устойчивый рост на протяжении последних лет. Показатель рационального использования ПНГ пока не улучшается и сохраняет свои значения в пределах 75 %.

Такая динамика вызвана следующими основными факторами:

1. Сохраняется рост добычи нефти за счет освоения месторождений Восточной Сибири, не располагающих необходимой инфраструктурой для рационального использования и транспортировки ПНГ;

2. Отмечается рост газового фактора на нефтяных месторождениях России, в том числе в Западной Сибири - крупнейшем нефтедобывающем регионе, обеспечивающем около 60 % всего производства нефти в стране (за шесть лет газовый фактор увеличился по России на 9 %, в Западной Сибири - на 11,2 %);

3. Началась активная фаза добычи нефти на крупнейшем осваиваемом месторождении Восточной Сибири - Ванкорском месторождении.

В настоящий момент решение проблемы сжигания попутного нефтяного газа ограничивается рядом факторов, среди которых:

  • несовершенство нормативно-правовой базы;
  • отсутствие прозрачности и достоверности данных;
  • низкий уровень оснащенности факельных установок средствами измерения.

В 2012 году постановлением Правительства РФ «Об особенностях исчисления платы за выбросы загрязняющих веществ, образующихся при сжигании на факельных установках и (или) рассеивании попутного нефтяного газа» установлен целевой показатель сжигания не более 5 %, но лишь немногие компании и регионы улучшили свой показатель по использованию ПНГ.

Отсутствие последовательности и единства в действиях государственных органов по решению проблемы оказывает негативное воздействие и на возможность сконцентрировать финансовые ресурсы государственной поддержки на решении этой важной проблемы нефтяной отрасли в области энергоэффективности и загрязнения атмосферного воздуха.

Еще одной важной проблемой в стране является отсутствие объективной информации о масштабах сжигания, в том числе низкий уровень оснащенности месторождений измерительной аппаратурой. WWF России совместно с центром «СканЭкс» выполнили пилотный проект для двух регионов - Ненецкого автономного округа и Красноярского края - по отработке методики использования методов дистанционного зондирования Земли (ДЗЗ) для дешифрирования факелов. Эта работа должна быть продолжена при поддержке федеральных и региональных природоохранных органов, чтобы в ближайшем будущем стать дополнительным инструментом мониторинга сжигания ПНГ.

Для повсеместного и достоверного учета ПНГ целесообразно использовать экономические стимулы для организации учета и контроля. При этом контроль над достоверностью учета, правильностью сведения баланса, за начислением и уплатой налогов должны осуществлять налоговые органы, а не Ростехнадзор, как это происходит сейчас.

В области международного сотрудничества наблюдается скачок поданных заявок на конкурс по отбору проектов совместного осуществления, но отказ России участвовать во втором периоде Киотского протокола приведет к прекращению данного источника финансирования в существующем формате.

Более эффективное использование месторождений суши возможно за счет масштабного развития газохимии (прекращения сжигания ПНГ и т. п.). Для этого необходим комплексный подход, позволяющий сформировать условия для реализации таких инвестиционных проектов, как оснащение нефтепромыслов необходимой измерительной аппаратурой, строительство производственных мощностей для переработки, хранения и транспортировки ПНГ.

Заключение

Проблемы нефтегазовой отрасли может решить изменение политики в области государственной поддержки. Вместо того чтобы обеспечивать налоговыми льготами и другими привилегиями новые крайне рискованные шельфовые проекты в Арктике (проект «Газпрома» «Приразломное» в Печорском море или проект компаний «Роснефть» и Exxon в Карском море), вероятно, целесообразно обеспечить государственную поддержку повышению эффективности уже существующих месторождений.

Экологические и экономические риски и издержки от освоения арктического шельфа сегодня настолько высоки, что необходимо добиваться смены вектора приоритетного развития нефтегазовой отрасли в России на ближайшие 10-15 лет.

В дополнение к природным и природно-техногенным проблемам освоения ресурсов УВ российского шельфа Арктики существуют серьезные опасности антропогенного характера. Например, многочисленные захоронения радиоактивных отходов в западной части Карского моря и другие.

В заключение отметим, что исследования в указанных выше направлениях крайне важны не только для развития фундаментальных знаний о процессах современного накопления осадков, термокарстовых и других процессов их переформирования, но и для организации экологически безопасного функционирования морских нефтегазовых промыслов и их инфраструктуры на море и прилегающей суше. Кроме того, эпизодическая или перманентная дегазация донных отложений представляет большую опасность для мореплавания, так как при этом нарушается плотность воды, что может привести к гибели судов. Поэтому необходимо усилить геолого-геофизические исследования на акваториях Арктики с картированием объектов различной природы, представляющих опасность для размещения нефтегазовых промыслов и их инфраструктуры (залежи свободных газов и газогидратов в донных отложениях, распространение палео- и современной мерзлоты, пинго и др.).

Рецензенты:

Баронин С.А., д.э.н., профессор, преподаватель кафедры «Экспертиза и управление недвижимостью» ПГУАС, г. Пенза.

Ломов С.П., д.г.н., профессор, преподаватель кафедры «Кадастр недвижимости и право» ПГУАС, г. Пенза.

Библиографическая ссылка

Поршакова А.Н., Старостин С.В., Котельников Г.А. ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ РАЙОНОВ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13090 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Авторский курс профессора, д.ф.-м.н., член-корр. РАЕН, члена SPE, ACS К.М. Федорова, главного специалиста ООО «НТЦ-ОЙЛТИМ» А.О. Потапова, директора по развитию ООО «Башнефть-ПЕТРОТЕСТ» Т.М. Мухаметзянова.

Цель курса - Эффективное управление разработкой месторождений включает применение широкого спектра геолого-технических мероприятий (ГТМ) на скважинах. Новые технологии позволяют решать многие проблемы, возникающие при разработке залежей, однако их применение связано с тщательным оперативным анализом состояния разработки, назревших проблем добычи и заводнения, научным и техническим обоснованием комплексного применения различных средств. Эти исследования называются мониторингом разработки месторождений.

Однако на сегодня состав работ по мониторингу не регламентирован и часто ограничивается только перестройкой геолого-технологических моделей с учетом новых промысловых данных и выработкой общих рекомендаций на их основе по дальнейшей разработке месторождения. Программа традиционных исследований пласта проводится для решения оперативных задач и зачастую не направлена на решение актуальных задач разработки месторождения в целом. Выбор скважин-кандидатов для исследований часто проводится по остаточному принципу. В ряде случаев отсутствует системный подход к изучению залежей и месторождений.

В результате геолого-технологические мероприятия, определяемые в результате работ по мониторингу, направлены, как правило, на интенсификацию притока и ограничение добычи воды, а не решают комплексных проблем месторождения в целом. Рекомендуемый список проведения ГТМ часто является недостаточно конкретным, в нем указывается лишь общее количество мероприятий различного типа.

На сегодняшний день назрела необходимость в дополнении сложившейся схемы проведения мониторинга новыми видами работ и регламентации его задач и содержания. В первую очередь эти работы должны быть направлены на снижение неопределенности представлений о геологической структуре залежи и детальный анализ энергетического состояния объекта разработки. Результаты этих исследований направлены на разработку целевой программы ГТМ для согласованного воздействия на добывающие и нагнетательные скважины. Выполнение такой программы позволит поднять степень извлечения запасов углеводородов и, следовательно, повысить эффективность разработки месторождения в целом.

По окончании курса слушатели смогут:

  • применять аналитические методики обработки промысловых данных и делать заключения по причинам отклонения параметров разработки от проектных значений,
  • давать заключения по источникам обводнения скважин и сбалансированности системы заводнения,
  • составлять комплексные программы дополнительных исследований и ГТМ, направленных на совершенствование системы заводнения.

Учебно-тематический план курса (40 акад. часов)

1. Концепция гидродинамического мониторинга разработки.

Сложившиеся подходы к проблеме мониторинга разработки. Развитие концепции гидродинамического мониторинга месторождений.

2. Методы и приемы согласования программы исследования скважин с задачами мониторинга разработки.

Гидродинамические исследования скважин: типы, цели и задачи. Разработка комплексной программы исследования скважин.

3. Анализ энергетического состояния залежи для совершенствования системы заводнения.

Методика построения карт изобар по результатам ГДИ для анализа энергетического состояния залежи. Анализ системы заводнения. Определение объемов нецелевой закачки.

4. Решение задач управления заводнением через создание целевой программы ГТМ.

Разработка методики целевого подхода к планированию и проведению ГТМ. Пример проведения кислотных обработок скважин Вахской группы месторождений. Разработка целевой программы ГТМ на примере Верх-Тарского месторождения. Применение основных элементов концепции гидродинамического мониторинга на примере Фаинского месторождения.