Лечение. Фармакокинетика ингаляционных глюкокортикостероидов Ингаляционные стероиды препараты

Ингаляционные кортикостероиды рекомендуются с профилактической целью у больных с бронхиальной астмой персистирующего течения, начиная с легкой степени тяжести. Ингаляционные стероиды практически не имеют системных эффектов по сравнению с системными стероидами, однако высокие дозы ингаляционных стероидов следует с осторожностью использовать у больных, входящих в группу риска по развитию глаукомы и катаракты.

У меренные дозы ингаляционных кортикостероидов I и II поколения не вызывают супрессию коры надпочечников, а также не влияют на метаболизм костной ткани, однако при назначении их детям рекомендуется контролировать рост ребенка. Препараты III поколения можно назначать детям с возраста 1 год именно потому, что они обладают минимальным коэффициентом системной биодоступности. С целью достижения устойчивого эффекта ингаляционные формы кортикостероидов должны использоваться регулярно. Уменьшение симптомов астмы обычно достигается к 3-7-му дню терапии. При необходимости одновременного назначении |1г-агонистов и ингаляционных стероидов для лучшего проникновения последних в воздухоносные пути , поступая в дыхательные пути и быстро абсорбируясь, попадает в системный кровоток. Более того, эта часть дозы может вызывать внелегочные системные НЭ, особенно при назначении высоких доз ИГКС, причем здесь немаловажное значение отводится типу используемого ингалятора с ИГКС, так как при вдыхании сухой пудры будесонида через турбухалер легочное отложение препарата увеличивается в 2 раза и более по сравнению с ингаляцией из дозированных аэрозолей .

Таким образом, высокий процент отложения препарата во внутрилегочных дыхательных путях в норме дает лучший терапевтический индекс для тех ИГКС, которые имеют низкую системную биодоступность при оральном пути введения. Это относится, например, к БДП, имеющему системную биодоступность за счет кишечной абсорбции, в отличие от будесонида, обладающего системной биодоступностью преимущественно за счет легочной абсорбции .

Для ИГКС с нулевой биодоступностью после пероральной дозы (флютиказон), характер устройства и техника проведения ингаляции определяют только эффективность лечения, но не влияют на терапевтический индекс .

Поэтому при оценке системной биодоступности необходимо учитывать общую биодоступность, то есть не только низкую оральную (почти нулевую у флютиказона и 6—13% у будесонида), но и ингаляционную биодоступность, средние величины которых колеблются в пределах от 20 (ФП) до 39% (флунизолид) () .

Для ИГКС с высокой фракцией ингаляционной биодоступности (будесонид, ФП, БДП) системная биодоступность может возрастать при наличии воспалительных процессов в слизистой бронхиального дерева. Это было установлено при сравнительном исследовании системных эффектов по уровню снижения кортизола в плазме крови после однократного назначения будесонида и БДП в дозе 2 мг в 22 ч здоровым курящим и некурящим лицам . Следует отметить, что после ингаляции будесонида уровень кортизола у курящих был на 28% ниже, чем у некурящих.

Это позволило сделать вывод о том, что при наличии воспалительных процессов в слизистой дыхательных путей при астме и хроническом обструктивном бронхите может измениться системная биодоступность тех ИГКС, которые имеют легочную абсорбцию (в данном исследовании это будесонид, но не БДП, имеющий кишечную абсорбцию).

Большой интерес вызывает мометазона фуроат (МФ), новый ИГКС с очень высокой противовоспалительной активностью, у которого отсутствует биодоступность. Существует несколько версий, объясняющих этот феномен. Согласно первой из них, 1 МФ из легких не сразу попадает в системный кровоток, подобно будесониду, длительно задерживающемуся в дыхательных путях из-за образования липофильных конъюгатов с жирными кислотами. Это объясняется тем, что МФ имеет высоколипофильную группу фуроат в позиции С17 молекулы препарата, в связи с чем он поступает в системный кровоток медленно и в количествах, недостаточных для определения. Согласно второй версии, МФ быстро метаболизируется в печени. Третья версия гласит: агломераты лактоза-МФ обусловливают низкую биодоступность из-за снижения степени растворимости. Согласно четвертой версии, МФ быстро метаболизируется в легких и потому при ингаляции не достигает системной циркуляции. И наконец, предположение, что МФ не поступает в легкие, не находит подтверждения, так как имеются данные о высокой эффективности МФ в дозе 400 мкг у больных с астмой. Поэтому первые три версии могут в какой-то степени объяснять факт отсутствия биоступности у МФ, однако этот вопрос требует дальнейшего изучения .

Таким образом, системная биодоступность ИГКС представляет собой сумму ингаляционной и оральной биодоступности. У флунизолида и беклометазона дипропионата системная биодоступность составляет примерно 60 и 62% соответственно, что несколько превышает сумму оральной и ингаляционной биодоступности других ИГКС.

В последнее время был предложен новый препарат ИГКС — циклезонид, оральная биодоступность которого практически равна нулю . Это объясняется тем, что циклезонид является пролекарством, его афинность по отношению к ГКС-рецепторам почти в 8,5 раза ниже, чем у дексаметазона. Однако, попадая в легкие, молекула препарата подвергается действию ферментов (эстераз) и переходит в свою активную форму (афинность активной формы препарата в 12 раз выше, чем у дексаметазона). В связи с этим циклезонид лишен целого ряда нежелательных побочных реакций, связанных с попаданием ИГКС в системный кровоток.

Связь с белками плазмы крови

ИГКС имеют довольно высокую связь с белками плазмы крови (); у будесонида и флютиказона эта связь несколько выше (88 и 90%) по сравнению с флунизолидом и триамцинолоном — 80 и 71% соответственно. Обычно для проявления фармакологической активности лекарственных средств большое значение имеет уровень свободной фракции препарата в плазме крови. У современных более активных ИГКС — будесонида и ФП она составляет 12 и 10% соответственно, что несколько ниже, чем у флунизолида и ТАА — 20 и 29%. Эти данные могут свидетельствовать о том, что в проявлении активности будесонида и ФП, кроме уровня свободной фракции препаратов, большую роль играют и другие фармакокинетические свойства препаратов .

Объем распределения

Объем распределения (Vd) ИГКС указывает на степень внелегочного тканевого распределения препарата. Большой Vd свидетельствует о том, что более значительная часть препарата распределяется в периферических тканях. Однако большой Vd не может служить показателем высокой системной фармакологической активности ИГКС, так как последняя зависит от количества свободной фракции препарата, способной вступать в связь с ГКР. На уровне равновесной концентрации наибольший Vd, во много раз превышающий этот показатель у других ИГКС, выявлен у ФП (12,1 л/кг) (); в данном случае это может указывать на высокую липофильность ФП.

Липофильность

Фармакокинетические свойства ИГКС на уровне тканей преимущественно определяются их липофильностью, являющейся ключевым компонентом для проявления селективности и времени задержки препарата в тканях. Липофильность увеличивает концентрацию ИГКС в дыхательных путях, замедляет их высвобождение из тканей, увеличивает сродство и удлиняет связь с ГКР, хотя до сих пор не определена грань оптимальной липофильности ИГКС .

В наибольшей степени липофильность проявляется у ФП, далее у БДП, будесонида, а ТАА и флунизолид являются водорастворимыми препаратами . Высоколипофильные препараты — ФП, будесонид и БДП — быстрее абсорбируются из респираторного тракта и дольше задерживаются в тканях дыхательных путей по сравнению с неингаляционными ГКС — гидрокортизоном и дексаметазоном, назначаемыми ингаляционно. Этим фактом, возможно, и объясняется относительно неудовлетворительная антиастматическая активность и селективность последних . О высокой селективности будесонида свидетельствует тот факт, что его концентрация в дыхательных путях через 1,5 ч после ингаляции 1,6 мг препарата оказывается в 8 раз выше, чем в плазме крови, и это соотношение сохраняется на протяжении 1,5—4 ч после ингаляции . Другое исследование выявило большое распределение ФП в легких, так как через 6,5 ч после приема 1 мг препарата обнаруживалась высокая концентрация ФП в ткани легких и низкая в плазме, в отношении от 70:1 до 165:1.

Поэтому логично предположить, что более липофильные ИГКС могут откладываться на слизистой дыхательных путей в виде «микродепо» препаратов, что позволяет продлить их местный противовоспалительный эффект, так как для растворения кристаллов БДП и ФП в бронхиальной слизи требуется более 5—8 ч, тогда как для будесонида и флунизолида, имеющих быструю растворимость, этот показатель составляет 6 мин и менее 2 мин соответственно . Было показано, что водорастворимость кристаллов, обеспечивающая растворимость ГКС в бронхиальной слизи, является важным свойством в проявлении местной активности ИГКС .

Другим ключевым компонентом для проявления противовоспалительной активности ИГКС является способность препаратов задерживаться в тканях дыхательных путей. В исследованиях in vitro, проведенных на препаратах легочной ткани, показано, что способность ИГКС задерживаться в тканях довольно тесно коррелирует с липофильностью. У ФП и беклометазона она выше, чем у будесонида, флунизолида и гидрокортизона . В то же время в исследованиях in vivo показано, что на слизистой трахеи крыс будесонид и ФП задерживались дольше по сравнению с БДП , причем будесонид задерживался дольше, чем ФП . В первые 2 ч после интубации будесонидом, ФП, БДП и гидрокортизоном высвобождение радиоактивной метки (Ra-метки) из трахеи у будесонида было замедленным и составляло 40% против 80% у ФП и БДП и 100% у гидрокортизона. В последующие 6 ч наблюдалось дальнейшее увеличение высвобождения будесонида на 25% и БДП на 15%, в то время как у ФП дальнейшего увеличения высвобождения Ra-метки не отмечалось

Эти данные противоречат общепринятому мнению о наличии корреляции между липофильностью ИГКС и их способностью к тканевой связи, так как менее липофильный будесонид задерживается дольше, чем ФП и БДП. Данный факт следует объяснить тем, что под действием ацетил-коэнзима А и аденозина трифосфата гидроксильная группа будесонида у атома углерода в положении 21 (С-21) замещается сложным эфиром жирных кислот, то есть происходит эстерификация будесонида с образованием конъюгатов будесонида с жирными кислотами. Этот процесс протекает внутриклеточно в тканях легких и дыхательных путей и в печеночных микросомах, где идентифицированы эфиры жирных кислот (олеаты, пальмитаты и др.) . Конъюгация будесонида в дыхательных путях и легких происходит быстро, так как уже через 20 мин после применения препарата 70—80% Ra-метки определялось в виде конъюгатов и 20—30% — в виде интактного будесонида, тогда как через 24 ч определялось только 3,2% конъюгатов первоначального уровня конъюгации, причем в одинаковой пропорции они были выявлены в трахее и в легких, что свидетельствует об отсутствии неопределенных метаболитов . Конъюгаты будесонида имеют очень низкое сродство к ГКР и потому не обладают фармакологической активностью .

Внутриклеточная конъюгация будесонида с жирными кислотами может происходить во многих типах клеток, будесонид может накапливаться в неактивной, но обратимой форме. Липофильные конъюгаты будесонида образуются в легких в тех же пропорциях, что и в трахее, что указывает на отсутствие неидентифицированных метаболитов . Конъюгаты будесонида не определяются в плазме и в периферических тканях.

Конъюгированный будесонид гидролизируется внутриклеточными липазами, постепенно высвобождая фармакологически активный будесонид, что может удлинить сатурацию рецептора и пролонгировать глюкокортикоидную активность препарата.

Если будесонид приблизительно в 6—8 раз менее липофилен, чем ФП, и, соответственно, в 40 раз менее липофилен по сравнению с БДП, то липофильность конъюгатов будесонида с жирными кислотами в десятки раз превышает липофильность интактного будесонида (табл. 3), чем и объясняется длительность его пребывания в тканях дыхательных путей .

Исследования показали, что эстерификация жирной кислотой будесонида приводит к пролонгированию его противовоспалительной активности. При пульсирующем назначении будесонида было отмечено удлинение ГКС-эффекта, в отличие от ФП. В то же время в исследовании in vitro при постоянном присутствии ФП оказался в 6 раз эффективнее будесонида . Возможно, это объясняется тем, что ФП легче и быстрее извлекается из клеток, чем более конъюгированный будесонид, в результате чего примерно в 50 раз снижается концентрация ФП и, соответственно, его активность ).

Таким образом, после ингаляции будесонида в дыхательных путях и легких образуется «депо» неактивного препарата в виде обратимых конъюгатов с жирными кислотами, что может удлинить его противовоспалительную активность. Это, несомненно, имеет огромное значение для лечения больных БА. Что касается БДП, более липофильного, чем ФП (табл. 4), то время его задержки в тканях дыхательных путей короче, чем у ФП, и совпадает с этим показателем у дексаметазона, что является, по-видимому, результатом гидролиза БДП до 17-БМП и беклометазона, липофильность последнего и дексаметазона одинаковы . Более того, в исследовании in vitro длительность пребывания Ra-метки в трахее после ингаляции БДП была больше, чем после его перфузии, что связано с очень медленным растворением кристаллов БДП, откладываемых в респираторных просветах во время ингаляции .

Продолжительное фармакологическое и терапевтическое действие ИГКС объясняется связью ГКС с рецептором и образованием комплекса ГКС+ГКР. Вначале будесонид связывается с ГКР медленнее, чем ФП, но быстрее, чем дексаметазон, однако через 4 ч разница в общем количестве связи с ГКР между будесонидом и ФП не обнаруживалась, в то время как у дексаметазона она составляла только 1/3 от связанной фракции ФП и будесонида.

Диссоциация рецептора из комплекса ГКС+ГКР отличалась у будесонида и ФП, будесонид по сравнению ФП диссоцируется быстрее из комплекса. Длительность комплекса будесонид+рецептор in vitro составляет 5—6 ч, этот показатель ниже по сравнению с ФП (10 ч) и 17-БМП (8 ч) , но более высок по сравнению с дексаметазоном . Из этого следует, что различия в местной тканевой связи будесонида, ФП, БДП не определяются на уровне рецепторов, а преимущественное влияние на разницу показателей оказывают различия в степени неспецифической связи ГКС с клеточными и субклеточными мембранами.

Как было показано выше (), наибольшее сродство к ГКР имеет ФП (приблизительно в 20 раз выше, чем у дексаметазона, в 1,5 раза выше, чем у 17-БМП, и в 2 раза выше, чем у будесонида) . На сродство ИГКС к ГКС-рецептору может оказать влияние и конфигурация молекулы ГКС. Например, у будесонида его право- и левовращающие изомеры (22R и 22S) имеют не только различное сродство к ГКР, но и разную противовоспалительную активность (табл. 4).

Сродство 22R к ГКР более чем в 2 раза превосходит сродство 22S, а будесонид (22R22S) занимает в этой градации промежуточное положение, его сродство к рецептору равно 7,8, а сила подавления отека — 9,3 (параметры дексаметазона приняты за 1,0) (табл. 4).

Метаболизм

БДП быстро, в течение 10 мин, метаболизируется в печени с образованием одного активного метаболита — 17-БМП и двух неактивных — беклометазона 21-монопропионата (21-БМН) и беклометазона .

В легких из-за низкой растворимости БДП, являющейся определяющим фактором в степени образования 17-БМП из БДП, может быть замедлено образование активного метаболита. Метаболизм 17-БМП в печени происходит в 2—3 раза медленнее, чем, например, метаболизм будесонида, что может быть лимитирующим фактором перехода БДП в 17-БМП.

ТАА метаболизируется с образованием 3 неактивных метаболитов: 6β-триокситриамцинолона ацетонида, 21-карбокситриамцинолона ацетонида и 21-карбокси-6β-гидрокситриамцинолона ацетонида.

Флунизолид образует главный метаболит — 6β-гидроксифлунизолид, фармакологическая активность которого в 3 раза превосходит активность гидрокортизона и имеет Т1/2 равную 4 ч.

ФП быстро и полностью инактивируется в печени с образованием одного частично активного (1% активности ФП) метаболита — 17β-карбоксильной кислоты.

Будесонид быстро и полностью метаболизируется в печени при участии цитохрома р450 3А (CYP3A) с образованием 2 главных метаболитов: 6β-гидроксибудесонид (образует оба изомера) и 16β-гидроксипреднизолон (образует только 22R). Оба метаболита обладают слабой фармакологической активностью.

Мометазона фуроат (фармакокинетические параметры препарата изучались у 6 добровольцев после ингаляции 1000 мкг — 5 ингаляций сухой пудры с радиометкой): 11% радиометки в плазме определялось через 2,5 ч, этот показатель увеличивался до 29% через 48 ч. Экскреция радиометки с желчью составила 74% и с мочой 8%, общее количество достигало 88% через 168 ч .

Кетоконазол и циметидин могут увеличить уровень будесонида в плазме после перорально принятой дозы в результате блокады CYP3A.

Клиренс и период полувыведения

ИГКС имеют быстрый клиренс (CL), его величина примерно совпадает с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных НЭ. С другой стороны, быстрый клиренс обеспечивает ИГКС высокий терапевтический индекс. Клиренс ИГКС колеблется в пределах от 0,7 л/мин (ТАА) до 0,9—1,4 л/мин (ФП и будесонид, в последнем случае имеет место зависимость от принятой дозы). Системный клиренс для 22R составляет 1,4 л/мин и для 22S — 1,0 л/мин. Наиболее быстрый клиренс, превышающий скорость печеночного кровотока, обнаружен у БДП (150 л/ч, а по другим данным — 3,8 л/мин, или 230 л/ч) (), что дает основание предполагать наличие внепеченочного метаболизма БДП, в данном случае в легких, приводящего к образованию активного метаболита 17-БМП . Клиренс 17-БМП равняется 120 л/ч.

Период полувыведения (Т1/2) из плазмы крови зависит от объема распределения и величины системного клиренса и указывает на изменение концентрации препарата с течением времени. У ИГКС Т1/2 из плазмы крови колеблется в широких пределах — от 10 мин (БДП) до 8—14 ч (ФП) (). Т1/2 других ИГКС довольно короткий — от 1,5 до 2,8 ч (ТАА, флунизолид и будесонид) и 2,7 ч у 17-БМП . У флютиказона Т1/2 после внутривенного введения составляет 7—8 ч, в то время как после ингаляции из периферической камеры этот показатель равен 10 ч . Имеются и другие данные, например, если Т1/2 из плазмы крови после внутривенного введения был равен 2,7 (1,4—5,4) ч, то Т1/2 из периферической камеры, рассчитанный по трехфазовой модели, составлял в среднем 14,4 ч (12,5—16,7 ч), что связано с относительно быстрой абсорбцией препарата из легких — Т1/2 2 (1,6-2,5) ч по сравнению с его медленной системной элиминацией . Последняя может привести к аккумуляции препарата при длительном его применении, что было показано после семидневного назначения ФП через дискахалер в дозе 1000 мкг 2 раза в день 12 здоровым добровольцам, у которых концентрация ФП в плазме крови увеличивалась в 1,7 раза по сравнению с концентрацией после однократной дозы 1000 мкг. Аккумуляция сопровождалась увеличением подавления уровня кортизола в плазме крови (95% против 47%) .

Заключение

Биодоступность ингаляционных ГКС зависит от молекулы препарата, от системы доставки препарата в дыхательные пути, от техники ингаляции и др. При местном назначении ИГКС происходит значительно лучший захват препаратов из дыхательных путей, они дольше удерживаются в тканях дыхательных путей, обеспечивается высокая селективность препаратов, особенно флютиказона пропионата и будесонида, лучшее соотношение эффект/риск и высокий терапевтический индекс препаратов. Внутриклеточная эстерификация будесонида жирными кислотами в тканях дыхательных путей приводит к местной задержке и формированию «депо» неактивного, но медленно регенерирующего свободного будесонида. Более того, большой внутриклеточный запас конъюгированного будесонида и постепенное выделение свободного будесонида из конъюгированной формы может удлинить сатурацию рецептора и противовоспалительную активность будесонида, несмотря на его меньшее, по сравнению с флютиказоном пропионатом и беклометазоном монопропионатом, сродство к ГКС-рецептору . На сегодняшний день существуют единичные сведения о фармакокинетических исследованиях весьма перспективного и высокоэффективного препарата мометазона фуроата, у которого при отсутствии биодоступности при ингаляционном введении обнаруживаются высокая противовоспалительная активность у больных астмой.

Длительная экспозиция и замедленная сатурация рецептора обеспечивают удлинение противовоспалительной активности будесонида и флютиказона в дыхательных путях, что может служить основанием для однократного назначения препаратов.

По вопросам литературы обращайтесь в редакцию

Литература
  1. Affrime M. B., Cuss F., Padhi D. et al. Bioavailability and Metabolism of Mometasone Furoate following Administration by Metered-Dose and Dry-Powder Inhalers in Healthy Human Volunteers // J. Clin. Pharmacol. 2000: 40; 1227-1236.
  2. Barnes P. J. Inhaled glucocorticoids: new developments relevant to updating the asthma management guidelines // Respir. Med. 1996; 9: 379-384
  3. Barnes P. J., Pedersen S., Busse W. W. Efficacy and safety of inhaled corticosteroids //Am. J. Respir. Crit. Care Med 1998; 157: 51- 53
  4. Barry P. W., Callaghan C. O. Inhalation drug delivery from seven different spacer devices Thorax 1996; 51: 835-840.
  5. Borgstrom L. E, Derom E., Stahl E. et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline //Am. J. Respir. Crit. Care Med. 1996; 153: 1636-1640.
  6. Brattsand R. What factors determine antiinflammatory activity and selectivity of inhaled steroids // Eur. Respir. Rev. 1997; 7: 356-361.
  7. Daley-Yates P. T., Price A. C., Sisson J. R. et al. Beclomethasone dipropionat: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in men // Br. J. Clin. Pharmacol. 2001; 51: 400-409.
  8. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety // Respir. Med. 1997; 91 (Suppl. A): 22-28.
  9. Esmailpour N., Hogger P., Rabe K. F. et al. Distribution of inhaled fluticason propionate between human lung tissue and serum in vivo // Eur. Respir. J. 1997; 10: 1496-1499.
  10. Guidelines for the Diagnosis and Management of asthma. Expert panel report, № 2. National institutes of health, Bethesda, MD. (NIP Publication № 97-4051).
  11. Hogger P., Ravert J., Rohdewald P. Dissolution, tissue binding and kinetics of receptor binding of inhaled glucocorticoids // Eur. Resip. J. 1993; 6: (Suppl. 17): 584 s.
  12. Hogger P., Rohdewald P. Binding kinetics of fluticason propionate to the human glucocorticoid receptor. Steroids 1994; 59: 597-602.
  13. Hogger P., Erpenstein U., Sorg C. et al Receptor affinity, protein expression and clinical efficacy of inhaled glucocorticoids // Am. J. Respir. Crit. Care Med. 1996; 153: A 336.
  14. Jackson W. F. Nebulised Budesonid Therapy in asthma scientific and Practical Review. Oxford, 1995: 1-64.
  15. Jenner W. N., Kirkham D. J. Immunoassay of beclomethasone 17-, 21-dipropionate and metabolites. In: Reid E, Robinson JD, Wilson I, eds. Bioanalysis of drugs and metabolites, New York, 1988: 77-86.
  16. Kenyon C. J., Thorsson L., Borgstrom L. Reduction in lung deposition of budesonide pressurized aerosol resulting from static chanjge? In plastic spacer devices // Drug delivery to the lungs. 1996; 7: 17-18.
  17. Miller-Larsson A., Maltson R. H., Ohlsson D. et al. Prolonged release from the airway tissue of glucocorticods budesonile and fluticasone propionate as compared to beclomethasone dipropionate and hydrocortisone (abstract) // Am. J. Respir. Crit. Care Med. 1994; 149: A 466.
  18. Miller-Larsson A., Maltson R. H., Hjertberg E. et al. Reversible fatty acid conjugation of budesonide: novel mechanism for prolonged retention of topically applied steroid in airway tissue // Drug. metabol. Dispos. 1998; v. 26 N 7: 623-630.
  19. Pedersen S., Byrne P. O. A comparison of the efficacy and safety of inhaled corticosteroids in asthma // Eur J Allergy Clin Immunol 1997; 52 (Suppl. 39): 1-34
  20. Selroos O., Pietinalho A., Lofroos A. B., Riska A. High-dose is more effective than low-dose inhaled corticosteroids when starting medication in patients with moderately severe asthma (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155: A 349.
  21. Thorsson L., Dahlstrom K., Edsbacker S et al. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in healthy subjects // Br. J. Clin. Pharmacol. 1997; 43: 155-161.
  22. Thorsson L., Edsbacker S. Conradson T. B. Lung deposition of budesonide from Turbuhaler is twice that from a pressured metered-dose-inhaler p-MDI // Eur. Respir. J. 1994; 10: 1839-1844.
  23. Tood G., Danlop K. Cason D., Shields M. Adrenal suppression in asthmatic children treated with high-dose fluticason propionate (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155. № 4 (part 2 of 2 parts): A 356l.
  24. Trescoli-Serrano C., Ward W. J., Garcia-Zarco M. et al. Gastroinstestinal absorbtion of inhaled budesonide and beclomethasone: has it any significant systemic effect? // Am. J. Respir. Crit. Care Med. 1995; 151 (№ 4 part 2): A 3753.
  25. Tunec A. K., Sjodin, Hallstrom G. Reversible formation of fatty acid esters of budesonide, an anti-asthma glucocorticoid, in human lung and liver microsomes // Drug. Metabolic. Dispos. 1997; 25: 1311-1317.
  26. Van den Bosch J. M., Westermann C. J. J., Edsbacker J. et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide // Biopharm Drug. Dispos. 1993; 14: 455-459.
  27. Wieslander E., Delander E. L., Jarkelid L. et al. Pharmacological importance of the reversible fatty acid conjugation of budesonide stadied in a rat cell line in vitro // Am. J. Respir. Cell. Mol. Biol. 1998; 19: 1-9.
  28. Wurthwein G., Render S., Rodhewald P. Lipophility and receptor affinity of glucocorticoids // Pharm Ztg. Wiss. 1992; 137: 161-167.
  29. Dietzel K. et al. Ciclesonide: an On-Site-Activate Steroid // Prog. Respir. Res. Basel. Karger. 2001: v. 31; p. 91-93.

Княжеская Н.П., Чучалин А.Г.

В настоящее время бронхиальную астму (БА) рассматривают как особое хроническое воспалительное заболевание дыхательных путей с прогрессирующим течением этого воспаления без специальной терапии. Имеется достаточное количество различных лекарственных препаратов, которые позволяют эффективно бороться с этим воспалением. Основой терапии для длительного контроля воспалительного процесса являются ИГКС, которые следует применять при персистирующей БА любой степени тяжести.

История вопроса

Одним из наиболее значимых достижений медицины ХХ века явилось внедрение в клиническую практику глюкокортикостероидных препаратов (ГКС). Широкое применение эта группа препаратов получила и в пульмонологии.

ГКС были синтезированы в конце 40-х годов прошлого века и вначале существовали исключительно в виде системных препаратов (пероральные и инъекционные формы). Практически сразу началось их применение при лечении тяжелых форм бронхиальной астмы, однако, несмотря на по-ложительный ответ на терапию, их использование ограничивалось выраженными системными побочными эффектами: развитием стероидного васкулита, системного остеопороза, стероид-индуцированного сахарного диабета, синдрома Иценко-Кушинга и т.д. Поэтому врачи и пациенты считали назначение ГКС крайней мерой, "терапией отчаяния". Попытки ингаляционного применения системных ГКС не увенчались успехом, поскольку независимо от способа введения этих препаратов сохранялись их системные осложнения, а терапевтический эффект был минимальным. Таким образом, невозможно даже рассматривать использование системных глюкокортикостероидов через небулайзер.

И хотя практически сразу после создания системных ГКС встал вопрос о разработке топических форм, но на решение этой проблемы потребовалось почти 30 лет. Первая публикация об успешном применении топических стероидов датирована 1971 годом и касалась применения беклометазона дипропионата при аллергическом рините, а в 1972 году этот препарат был успешно применен для лечения бронхиальной астмы.

В настоящее время ИГКС рассматриваются в качестве средств первой линии в терапии бронхиальной астмы. Чем выше тяжесть течения бронхиальной астмы, тем большие дозы ингаляционных стероидов следует применять. По данным ряда исследований, у пациентов, начавших лечение ИГКС не позднее двух лет от начала заболевания, отмечены существенные преимущества в улучшении контроля над симптомами астмы по сравнению с группой, начавшей лечение ИГКС по прошествии более чем 5 лет от дебюта заболевания.

ИГКС являются базисными, то есть основными препаратами в лечении всех патогенетических вариантов бронхиальной астмы (БА) персистирующего течения, начиная с легкой степени тяжести.

Топические формы практически безопасны и не вызывают системных осложнений даже при длительном применении в высоких дозах.

Несвоевременная и неадекватная терапия ИГКС может привести не только к неконтролируемому течению БА, но и к развитию жизнеугрожающих состояний, требующих назначения гораздо более серьезной системной стероидной терапии. В свою очередь, длительная системная стероидная терапия даже небольшими дозами может сформировать ятрогенные болезни. Следует учитывать, что препараты для контроля заболевания (базисная терапия) следует применять ежедневно и длительно. Поэтому основное требование к ним - они должны быть не только эффективными, но и прежде всего безопасными.

Противовоспалительный эффект ИГКС связан с их ингибирующим действием на клетки воспаления и их медиаторы, включая продукцию цитокинов, вмешательство в метаболизм арахидоновой кислоты и синтез лейкотриенов и простагландинов, снижение проницаемости микрососудов, предотвращение прямой миграции и активации клеток воспаления, повышение чувствительности -рецепторов гладкой мускулатуры. ИГКС увеличивают синтез противовоспалительных белков (липокортина-1), увеличивают апоптоз и снижают количество эозинофилов путем ингибирования интерлейкина-5. Таким образом, ИГКС приводят к стабилизации клеточных мембран, уменьшают проницаемость сосудов, улучшают функцию -рецепторов как путем синтеза новых, так и повышая их чувствительность, стимулируют эпителиальные клетки.

ИГКС отличаются от системных глюкокортикостероидов своими фармакологическими свойствами: липофильностью, быстротой инактивации, коротким периодом полувыведения из плазмы крови. Важно учитывать, что лечение ИГКС является местным (топическим), что обеспечивает выраженные противовоспалительные эффекты непосредственно в бронхиальном дереве при минимальных системных проявлениях. Количество ИГКС, доставляемое в дыхательные пути, будет зависеть от номинальной дозы препарата, типа ингалятора, наличия или отсутствия пропеллента, а также техники выполнения ингаляции.

К ИГКС относятся беклометазон дипропионат (БДП), будесонид (БУД), флутиказона пропионат (ФП), мометазона фуроат (МФ). Они выпускаются в виде дозированных аэрозолей, сухой пудры, а также в виде растворов для использования в небулайзерах (Пульмикорт).

Особенности будесонида как ингаляционного глюкокортикостероида

Из всех ингаляционных глюкокортикоидов будесонид имеет наиболее благоприятный терапевтический индекс, что связано с его высоким сродством к глюкокортикоидным рецепторам и ускоренным метаболизмом после системной абсорбции в легких и кишечнике. Отличительными особенностями будесонида среди других препаратов этой группы являются: промежуточная липофильность, длительная задержка в ткани благодаря конъюгации с жирными кислотами и высокая активность в отношении кортикостероидного рецептора. Сочетание этих свойств определяет исключительно высокую эффективность и безопасность будесонида в ряду других ИКС. Будесонид отличается несколько меньшей липофильностью в сравнении с другими современными ИКС, такими как флутиказон и мометазон. Меньшая липофильность позволяет будесониду быстрее и более эффективно проникать через слой слизи, покрывающий слизистую оболочку в сравнении с более липофильными препаратами. Эта очень важная особенность данного препарата во многом определяет его клиническую эффективность. Предполагается, что в основе большей эффективности БУД в сравнении с ФП при применении в виде водных суспензий при аллергическом рините лежит именно меньшая липофильность БУД. Попадая внутрь клетки, будесонид образует эфиры (конъюгаты) с длинноцепочечными жирными кислотами, такими как олеиновая и ряд других. Липофильность таких конъюгатов очень высока, благодаря чему БУД может длительное время задерживаться в тканях.

Будесонид является ИГКС, у которого доказана возможность однократного применения. Фактором, способствующим эффективности применения будесонида один раз в сутки, является ретенция будесонида в дыхательных путях посредством формирования внутриклеточного депо благодаря обратимой эстерификации (образованию эфиров жирных кислот). Будесонид способен образовывать внутри клеток конъюгаты (эфиры в 21 положении) с длинноцепочечными жирными кислотами (олеиновой, стеариновой, пальмитиновой, пальмитолеиновой). Эти конъюгаты отличаются исключительно высокой липофильностью, которая значительно превышает таковую у других ИГКС. Было установлено, что интенсивность образования эфиров БУД не одинакова в разных тканях. При внутримышечном введении препарата крысам в мышечной ткани эстерифицируется около 10% препарата, а в легочной - 30-40%. При этом при интратрахеальном ведении эстерифицируется не менее 70% БУД, а в плазме его эфиры не определяются . Таким образом, БУД обладает выраженной селективностью в отношении ткани легких. При снижении концентрации свободного будесонида в клетке активируются внутриклеточные липазы, высвобождающийся из эфиров будесонид вновь связывается с ГК-рецептором. Подобный механизм не свойственен другим глюкокортикоидам и способствует пролонгации противовоспалительного эффекта.

В ряде исследований показано, что внутриклеточное депонирование может оказаться более важным в плане активности препарата, чем сродство к рецептору. Как было показано, БУД задерживается в ткани трахеи и главных бронхов крысы значительно дольше, чем ФП. Необходимо отметить, что конъюгация с длинноцепочечными жирными кислотами является уникальной особенностью БУД, благодаря чему создается внутриклеточное депо препарата и обеспечивается его продолжительное действие (до 24 часов).

Кроме того, БУД отличается высоким сродством к кортикостероидному рецептору и местной кортикостероидной активностью, превышающей показатели "старых" препаратов беклометазона (включая его активный метаболит Б17МП), флунизолида и триамцинолона и сопоставимой с активностью ФП.

Кортикостероидная активность БУД практически не отличается от таковой ФП в широком диапазоне концентраций. Таким образом, БУД сочетает в себе все необходимые свойства ингаляционного кортикостероида, обеспечивающие клиническую эффективность этого класса лекарственных средств: за счет умеренной липофильности быстро проникает в слизистую; за счет конъюгации с жирными кислотами длительно задерживается в ткани легких; при этом препарат обладает исключительно высокой кортикостероидной активностью.

При использовании ингаляционных кортикостероидов возникают определенные беспокойства, связанные с потенциальной способностью этих препаратов оказывать системное действие. В целом системная активность ИКС зависит от их системной биодоступности, липофильности и объема распределения, а также от степени связи препарата с белками крови. Для будесонида характерно уникальное сочетание этих свойств, которые делают этот препарат наиболее безопасным среди известных.

Сведения относительно системного эффекта ИГКС весьма разноречивы. Системная биодоступность складывается из пероральной и легочной. Пероральная доступность зависит от абсорбции в желудочно-кишечном тракте и от выраженности эффекта "первого прохождения" через печень, благодаря чему в системный кровоток поступают уже неактивные метаболиты (за исключением беклометазона 17-монопропионата - активного метаболита беклометазона дипропионата). Легочная биодоступность зависит от процента попадания препарата в легкие (что зависит от типа используемого ингалятора), наличия или отсутствия носителя (лучшие показатели имеют ингаляторы, не содержащие фреон) и от абсорбции препарата в дыхательных путях.

Общая системная биодоступность ИКС определяется той долей препарата, которая попала в системный кровоток с поверхности слизистой бронхов, и частью проглоченной доли, которая не была метаболизирована при первом прохождении через печень (оральная биодоступность). В среднем около 10-50% препарата оказывает свое терапевтическое действие в легких и в последующем попадает в системный кровоток в активном состоянии. Эта фракция полностью зависит от эффективности легочной доставки. 50-90% препарата проглатывается, и конечная системная биодоступность этой фракции определяется интенсивностью последующего метаболизма в печени. БУД входит в число препаратов с наименьшей оральной биодоступностью.

Большинству больных для достижения контроля бронхиальной астмы достаточно использовать низкие или средние дозы ИГКС, поскольку кривая "доза-эф-фект" достаточно плоская для таких показателей, как симптомы заболевания, параметры функции внешнего дыхания, гиперреактивность дыхательных путей. Перевод на высокие и сверхвысокие дозы значительно не улучшает контроль бронхиальной астмы, но увеличивает риск развития побочных эффектов. Однако существует четкая связь между дозой ИГКС и профилактикой тяжелых обострений бронхиальной астмы. Следовательно, у ряда больных с тяжелой астмой предпочтительно длительное назначение высоких доз ИГКС, которые позволяют уменьшить или отменить дозу пероральных ГКС (или избежать их длительного применения). При этом профиль безопасности высоких доз ИГКС явно более благоприятный, чем у пероральных ГКС.

Следующее свойство, определяющее безопасность будесонида - это его промежуточная липофильность и объем распределения. Препараты с высокой липофильностью отличаются большим объемом распределения. Это значит, что большая доля лекарственного средства может оказывать системный эффект, а значит, меньше препарата находится в циркуляции и доступно для превращения в неактивные метаболиты. БУД имеет промежуточную липофильность и относительно небольшой объем распределения в сравнении с БДП и ФП, что, безусловно, влияет на профиль безопасности этого ингаляционного кортикостероида. Липофильность влияет и на потенциальную способность препарата оказывать системное действие. Для более липофильных препаратов характерен значительный объем распределения, что теоретически может сопровождаться несколько большим риском развития системных побочных эффектов. Чем больше объем распределения, тем лучше препарат проникает в ткани и внутрь клеток, он имеет больший период полувыведения. Другими словами, ИГКС с большей липофильностью в целом будут эффективнее (особенно при ингаляционном применении), но при этом могут иметь худший профиль безопасности.

Вне связи с жирными кислотами БУД обладает наименьшей липофильностью среди используемых в настоящее время ИГКС и, следовательно, имеет меньший объем внелегочного распределения. Этому способствует также незначительная эстерификация препарата в мышечной ткани (определяющая значительную долю системного распределения препарата в организме) и отсутствие липофильных эфиров в системной циркуляции . Принимая во внимание то, что доля свободного БУД, не связанного с белками плазмы, как и у многих других ИГКС несколько превышает 10%, а период полувыведения составляет всего 2,8 часа, можно предполагать, что потенциальная системная активность этого препарата будет совсем незначительной. Вероятно, именно этим объясняется меньшее воздействие БУД на синтез кортизола в сравнении с более липофильными препаратами (при применении в высоких дозах). Будесонид является единственным ингаляционным КС, эффективность и безопасность которого были подтверждены в значительном количестве исследований у детей в возрасте от 6 месяцев и старше.

Третья составляющая, обеспечивающая препарату низкую системную активность - это степень связывания с белками плазмы крови. БУД относится к ИГКС, обладающим наибольшей степенью связи, не отличаясь при от БДП, МФ и ФП.

Таким образом, БУД отличается высокой кортикостероидной активностью, длительным действием, что обеспечивает его клиническую эффективность, а также низкой системной биодоступностью и системной активностью, что, в свою очередь, делает этот ингаляционный кортикостероид одним из наиболее безопасных.

Необходимо также отметить, что БУД является единственным препаратом этой группы, у которого нет доказательств риска применения при беременности (уровень доказательности В) и по классификации FDA (Управление по контролю за качеством пищевых продуктов и лекарственных средств США).

Как известно, при регистрации любого нового препарата FDA присваивает определенную категорию риска при применении данного препарата у беременных женщин. Определение категории производится на основании данных о результатах исследований тератогенности у животных и информации о предшествующем применении у беременных женщин.

В инструкциях к будесониду (формы для ингаляционного и интраназального введения) под разными торговыми названиями, которые официально зарегистрированы в США, указана одинаковая категория применения при беременности. Кроме того, во всех инструкциях ссылаются на результаты одних и тех же исследований у беременных, проведенных в Швеции, с учетом данных которых будесониду была присвоена категория B.

При проведении исследований учеными из Швеции собиралась информация о течении беременности и ее результате у пациенток, принимавших ингаляционный будесонид. Данные заносились в специальный реестр Swedish Medical Birth Registry, где регистрируются практически все беременности в Швеции.

Таким образом, будесонид обладает следующими свойствами:

    эффективность: контроль симптомов астмы у большинства пациентов;

    хороший профиль безопасности, отсутствие системных эффектов в терапевтических дозах;

    быстрое накопление в слизистых респираторного тракта и быстрое наступление противовоспалительного эффекта;

    длительность действия до 24 часов;

    не влияет на конечный рост при длительном применении у детей, на минерализацию кости, катаракту, не вызывает ангиопатию;

    допускается применение у беременных - не вызывает увеличения числа аномалий плода;

    хорошая переносимость; обеспечивает высокий комплайнс.

Бесспорно, пациенты с персистирующей бронхиальной астмой должны использовать адекватные дозы ингаляционных кортикостероидов для достижения противовоспалительного эффекта. Но следует заметить, что для ИГКС точное и правильное выполнение дыхательного маневра является особенно важным (как ни для одного другого ингаляционного препарата), чтобы обеспечить необходимую депозицию препарата в легких.

Ингаляционный путь введения лекарств является основным при бронхиальной астме, поскольку эффективно создает высокие концентрации препарата в дыхательных путях и позволяет свести к минимуму системные нежелательные эффекты. Существуют различные типы систем доставки: дозированные аэрозольные ингаляторы, порошковые ингаляторы, небулайзеры.

Само слово "небулайзер" (от латинского "nebula" - туман, облачко), впервые было употреблено в 1874 году для обозначения устройства, "превращающего жидкое вещество в аэрозоль для медицинских целей". Разумеется, современные небулайзеры отличаются от своих исторических предшественников по своей конструкции, техническим характеристикам, размерам и др., но принцип действия остался прежним: превращение жидкого лекарственного препарата в лечебный аэрозоль с определенными характеристиками.

Абсолютными показаниями для небулайзерной терапии (по данным Muers M.F.) являются: невозможность доставки лекарственного препарата в дыхательные пути никаким другим видом ингаляторов; необходимость доставки препарата в альвеолы; состояние пациента, не позволяющее использовать никакой другой вид ингаляционной терапии. Небулайзеры являются единственным способом доставки некоторых лекарств: для антибиотиков и муколитиков дозированных ингаляторов просто не существует. Ингаляционная терапия детей до 2 лет без использования небулайзеров трудноосуществима.

Таким образом, можно выделить несколько категорий больных, для которых небулайзерная терапия является оптимальным решением:

    лица с растройствами интелекта

    лица со сниженной реакций

    больные в состоянии обострения БА и ХОБЛ

    часть пожилых больных

Место Пульмикорт суспензии для небулайзеров в терапии бронхиальной астмы

Базисная терапия в случае неэффективности других форм ингаляционной глюкокортикостероидной терапии или невозможности использования других форм доставки, в том числе базисная терапия детей до 2-х лет.

Су Суспензию Пульмикорта возможно примененять у детей первых лет жизни. Безопасность Пульмикорта для детей складывается из нескольких составляющих: низкая легочная биодоступность, задержка препарата в тканях бронхов в этерифицированной форме и т.д. У взрослых поток воздуха, создаваемый при вдохе, существенно превосходит поток, созданный небулайзером. У подростков дыхательный объем меньше, чем у взрослых, следовательно, поскольку поток небулайзера остается неизменным, дети при ингаляциях получают более концентрированный раствор, чем взрослые. Но при этом после назначения в виде ингаляций в крови взрослых и детей разного возраста Пульмикорт обнаруживается в одинаковых концентрациях, хотя отношение принятой дозы к массе тела у детей 2-3 лет в несколько раз выше, чем у взрослых. Эта уникальная особенность имеется только у Пульмикорта, так как независимо от начальной концентрации большая часть препарата "задерживается" в легких и не поступает в кровь.Таким образом, суспензия Пульмикорта не только безопасна для детей, но даже более безопасна у детей, чем у взрослых.

фективность и безопасность суспензии Пульмикорта подтверждены многочисленными исследованиями, проведеными в самых разных возрастных группах, начиная с периода новорожденности и самого раннего возраста (это большинство исследований) до подросткового и старшего подросткового возраста. Эффективность и безопасность суспензии Пульмикорта для небулайзерной терапии оценивалась в группах детей с персистирующей бронхиальной астмой разной степени тяжести, а также при обострениях заболевания. Таким образом, Пульмикорт, суспензия для небулайзера является одним из наиболее изученных препаратов базисной терапии, применяемых в педиатрии.

Применение суспензии Пульмикорта при помощи небулайзера сопровождалось существенным снижением потребности в препаратах скорой помощи, положительным влиянием на функцию легких и частоту обострений.

Также было установлено, что при терапии суспензией Пульмикорта в сравнении с плацебо значительно меньшему количеству детей было необходимо дополнительное назначение системных кортикостероидов.

Пульмикорт суспензия для небулайзера также хорошо зарекомендовал себя, как средство стартовой терапии у детей с бронхиальной астмой, начиная с возраста 6 мес.

Купирование обострений бронхиальной астмы как альтернатива назначению системных стероидов, а в ряде случаев совместное назначение суспензии Пульмикорта и системных стероидов.

Было установлено, что применение суспензии Пульмикорта в высокой дозе эквивалентно использованию преднизолона при обострениях астмы и ХОБЛ. При этом одинаковые изменения функции легких наблюдались как после 24, так и 48 часов терапии.

В исследованиях также было установлено, что применение ингаляционных кортикостероидов, включая суспензию Пульмикорта, сопровождается достоверно большим показателем ОФВ1 в сравнении с использованием преднизолона уже через 6 часов после начала лечения.

Более того, было показано, что при обострениях ХОБЛ или астмы у взрослых пациентов дополнительное введение системного кортикостероида в терапию суспензией Пульмикорта не сопровождается дополнительным эффектом. При этом монотерапия суспензией Пульмикорта также не отличалась от таковой системным кортикостероидом. В исследованиях было установлено, что применение суспензии Пульмикорта при обострениях ХОБЛ сопровождается достоверным и клинически значимым (более 100 мл) приростом показателя ОФВ1.

При сравнении эффективности суспензии Пульмикорта с преднизолоном у пациентов с обострением ХОБЛ, было установлено, что этот ингаляционный кортикостероид не уступает системным препаратам.

Применение небулайзерной терапии суспензией Пульмикорта у взрослых с обострениями бронхиальной астмы и ХОБЛ не сопровождалось изменениями синтеза кортизола и метаболизма кальция. В то время как использование преднизолона, не отличаясь большей клинической эффективностью, приводит к выраженному снижению синтеза эндогенных кортикостероидов, снижению уровня сывороточного остеокальцина и повышению экскреции кальция с мочой.

Таким образом, применение небулайзерной терапии суспензией Пульмикорта при обострениях БА и ХОБЛ у взрослых сопровождается быстрым и клинически значимым улучшением функции легких, в целом имеет эффективность, сопоставимую с таковой системных кортикостероидов, в отличие от которых не приводит к угнетению функции надпочечников и изменению метаболизма кальция.

Базисная терапия для снижении дозы системных стероидов.

Применение высокодозовой небулайзерной терапии суспензией Пульмикорта дает возможность эффективно отменить системные кортикостероиды у пациентов, чья астма требует их регулярного применения. Было установлено, что на фоне терапии суспензией Пульмикорта в дозе 1 мг дважды в день возможно эффективно снизить дозу системного кортикостероида при сохранении уровня контроля астмы. Высокая эффективность небулайзерной терапии ингаляционным кортикостероидом позволяет уже через 2 месяца применения уменьшить дозу системных глюкокортикостероидов без ухудшения функции легких.

Снижение дозы системного кортикостероида на фоне применения суспензии будесонида сопровождается предотвращением обострений. Было показано, что в сравнении с использованием плацебо пациенты, использовавшие суспензию Пульмикорта, имели вдвое меньший риск развития обострений при снижении дозы системного препарата.

Та Также было установлено, что при отмене системных кортикостероидов на фоне терапии суспензией Пульмикорта в течение 1 года происходит восстановление не только базового синтеза кортизола, но также нормализация функции надпочечников и их способности обеспечивать "стрессовую" системную кортикостероидную активность.

ким образом, применение небулайзерной терапии суспензией Пульмикорта у взрослых позволяет эффективно и быстро снизить дозу системных кортикостероидов при сохранении исходной функции легких, улучшении симптоматики и меньшей частоте обострений в сравнении с плацебо. Этот подход сопровождается также уменьшением частоты побочных эффектов от системных кортикостероидов и восстановлением функции коры надпочечников.

Литература
1. Авдеев С.Н., Жестков А.В., Лещенко И.В. и др. Небулизированный будесонид при тяжелом обострении бронхиальной астмы: сравнение с системными стероидами. Мультицентровое рандомизированное контролируемое исследование // Пульмонология. 2006. № 4. С. 58-67. 2.
2. Овчаренко С.И., Передельская О.А., Морозова Н.В., Маколкин В.И. Небулайзерная терапия бронхолитиками и суспензией пульмикорта в лечении тяжелого обострения бронхиальной астмы // Пульмонология. 2003. № 6. С. 75-83.
3. Цой А.Н., Аржакова Л.С., Архипов В.В. Фармакодинамика и клиническая эффективность ингаляционных глюкокортикостероидов у больных с обострением бронхиальной астмы. Пульмонология 2002;- №3. - С. 88.
4. Цой А.Н. Сравнительная фармакокинетика ингаляционных глюкокортикоидов. Аллергология 1999; 3: 25-33
5. Цой А.Н. Ингаляционные глюкокортикоиды: эффективность и безопасность. РМЖ 2001; 9: 182-185
6. Barnes P.J. Inhaled glucocorticoides for asthma. N. Engl. Med. 1995; 332: 868-75
7. Brattsand R., Miller-Larsson A. The role of intracellular esterification in budesonide once-daily dosing and airway selectivity // Clin Ther. - 2003. - Vol. 25. - P. C28-41.
8. Boorsma M. et al. Assessment of the relative systemic potency of inhaled fluticasone and budesonide // Eur Respir J. - 1996. - Vol. 9(7). - P. 1427-1432. Grimfeld A. et al. Longterm study of nebulised budesonide in young children with moderate to severe asthma // Eur Respir J. - 1994. - Vol. 7. - P. 27S.
9. Code of Federal Regulations - Title 21 - Food and Drugs 21 CFR 201.57(f)(6) http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfmCrisholm S et al. Once-daily budesonide in mild asthma. Respir Med 1998; 421-5
10. Derom E. et al. Systemic Effects of Inhaled Fluticasone Propionate and Budesonide in Adult Patients with Asthma // Am. J. Respir. Crit. Care Med. - 1999. - Vol. 160. - P. 157-161.
11. FDA Pregnancy Labeling Task Force http://www.fda.gov/cder/handbook/categc.htm.