Основные этапы фармакокинетики. Фармакокинетика лекарственных веществ. Всасывание лекарственных веществ

Фармакокинетика («человек – лекарство») - изучает влияние организма на лекарственное вещество, пути его поступления, распределения, биотрансформации и выведения лекарств из организма. Физиологические системы организма в зависимости от их врожденных и приобретенных свойств, а также способов и путей введения лекарственных пре­паратов будут в разной степени изменять судьбу лекарствен­ного вещества. Фармакокинетика лекарственного вещества зависит от пола, возраста и характера заболевания.

Основным интегральным показателем для суждения о судьбе лекарственных веществ в организме является опреде­ление концентрации этих веществ и их метаболитов в жидкостях, тканях, клетках и клеточных органеллах.

Длительность действия препаратов зависит от его фармакокинетических свойств. Период полувыведения - время, необходимое для очищения плазмы крови от лекарственного вещества на 50%.

Этапы (фазы) фармакокинетики. Движение лекарственного вещества и изменение его молекулы в организме представляет собой ряд последовательных процессов всасывания, рас­пределения, метаболизма и экскреции (выведения) лекарственных средств. Для всех этих процессов необходимым условием служит их про­никновение через клеточные оболочки.

Прохождение лекарственных веществ через клеточные оболочки.

Проникновение лекарственных веществ через оболочки клеток регулируется естественными процессами диффузии, фильтрации и активного транспорта.

Диффузия основана на естественном стремлении любого вещества двигаться из области высокой концентрации в направлении к области более низкой концентрации.

Фильтрация . Водные каналы в местах тесного соединения прилегающих эпителиальных клеток пропускают через поры толь­ко некоторые водорастворимые вещества. Нейтральные или не­заряженные (т. е. неполярные) молекулы проникают быстрее, так как поры обладают электрическим зарядом.

Активный транспорт - этот механизм регулирует движение некоторых лекарственных веществ в клетки или из них против концентрационного градиента. Для реализации этого процесса требуется энергия, и он происходит быстрее, чем перенос веществ путем диффузии. Молекулы со сходным строением конкурируют за молекулы-переносчики. Механизм активного транспорта вы­сокоспецифичен для определенных веществ.

Некоторые органные особенности клеточных мембран.

Мозг и спинномозговая жидкость. Капилляры в мозге отлича­ются от большинства капилляров других участков организма тем, что их эндотелиальные клетки не имеют пространств, через ко­торые вещества проникают во внеклеточную жидкость. Тесно примыкающие друг к другу эндотелиальные клетки капилляров, соединенные с базальной мембраной, а также тонкий слой отростков астроцитов препятствуют контакту крови с мозговой тканью. Этот гематоэнцефалический барьер предотвращает проникновение некоторых веществ из крови в мозг и спинномозговую жидкость (СМЖ). Жиронерастворимые вещества через этот барьер не проникают. Напротив, жирорастворимые вещества легко проникают через гематоэнцефалический барьер.


Плацента . Хорионические ворсины, состоящие из слоя трофобластов, т.е. клеток, окружающих капилляры плода, погру­жены в материнскую кровь. Кровоток беременной и плода разделены барьером, осо­бенности которого те же, что у всех липидных мембран организма, т.е. он проницаем только для жирорастворимых веществ и не­проницаем для веществ, растворимых в воде (особенно если их относительная молекулярная масса (ОММ) превышает 600). Кроме того, плацента содержит моноаминоксидазу, холинэстеразу и систему микросомальных фер­ментов (сходную с таковой в печени) способную метаболизировать лекарственные вещества и реагирующую на препараты, которые принимает беременная.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таб­летки, свечи, аэрозоли); б) растворимостью в тканях; в) крово­током в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия . Таким путем проникают хорошо раство­римые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

2) Активный транспорт . В этом случае перемещение веществ че­рез мембраны происходит с помощью транспортных систем, содер­жащихся в самих мембранах;

3) Фильтрация . Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мел­кие гидрофильные молекулы лекарственных веществ). Интенсив­ность фильтрации зависит от гидростатического и осмотического давления;

4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного ве­щества определяется его растворимостью в липидах, качеством свя­зи с белками плазмы крови, интенсивностью регионарного крово­тока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наи­более активно кровоснабжаются (сердце, печень, легкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы . Ле­карственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное со­единение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация ) - это комплекс физико-химических и биохими­ческих превращений, которым подвергаются лекарственные вещества в орга­низме. В результате образуются метаболиты (водорастворимые вещества), которые лег­ко выводятся из организма.

В результа­те биотрансформации вещества приобретают большой заряд (ста­новятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям : а) снижение растворимости препаратов в жирах и б) сниже­ние их биологической активности.

Этапы метаболизма: Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

Выделяют два типа метаболизма лекар­ственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстанов­ление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетичес­кие реакции , которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъ­югация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени , однако она осуществляется также в плазме крови и в других тканях . Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на централь­ную нервную систему и резко возрастает частота развития энцефа­лопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и пере­носимость одних и тех же лекарственных веществ у различных боль­ных неодинакова. Эти отличия определяются генетическими фак­торами , детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствитель­ности организма человека к лекарственным веществам составляет предмет фармакогенетики . Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наслед­ственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В за­висимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Среди наследственных дефектов ферментных систем часто встре­чается недостаточность глюкозо-6-фосфатдегидрогенезы (Г-6-ФДГ). Она проявляется массивным разрушением эритроцитов (гемолити­ческие кризы) при применении сульфаниламидов, фуразолидона и других препаратов. Кроме того, люди с недостаточностью Г-6-ФДР-чувствительны к пищевым продуктам, содержащим конские бобы, крыжовник, красную смородину. Существуют больные с недоста­точностью ацетилтрансферазы, каталазы и других ферментов в орга­низме. Атипичные реакции на лекарственные средства при наслед­ственных нарушениях обмена веществ встречаются при врожденной метгемоглобинемии, порфирии, наследственных негемолитических желтухах.

Элиминация . Различают несколько путей выведения (экскреции ) лекарствен­ных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами .

Элиминация почками . Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах . К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция . В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он кон­центрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник .

После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для аб­сорбции в кишечнике (например, неомицин). Под влиянием ферментов и бакте­риальной микрофлоры желудочно-кишечного тракта лекарствен­ные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному тран­спорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарствен­ные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом .

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через легкие . Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ грудным молоком . Лекарственные вещества, содержащиеся в плазме кормящих жен­щин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элими­нацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного ве­щества из организма. Термином «почечный клиренс кре­атинина » определяют выведение эндогенного креатинина из плаз­мы. Большинство лекарственных веществ элиминируется либо че­рез почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и по­чечного клиренса, причем печеночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

  • 1) Введение лекарственного средства в организм;
  • 2) Высвобождение лекарственного вещества из лекарственной формы;
  • 3) Действие и проникновение лекарственного вещества через биологические мембраны в сосудистое русло и ткани;
  • 4) Распределение лекарственного вещества в биологических жидкостях органов и тканей;
  • 5) Биодоступность;
  • 6) Биотрансформация;
  • 7) Выведение лекарственного вещества и метаболитов.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами:

  • а) лекарственной формой (таблетки, свечи, аэрозоли);
  • б) растворимостью в тканях;
  • в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

  • 1) Пассивная диффузия. Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;
  • 2) Активный транспорт. В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;
  • 3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мелкие гидрофильные молекулы лекарственных веществ). Интенсивность фильтрации зависит от гидростатического и осмотического давления;
  • 4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают своё содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного вещества определяется его растворимостью в липидах, качеством связи с белками плазмы крови, интенсивностью регионарного кровотока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наиболее активно кровоснабжаются (сердце, печень, лёгкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Лекарственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное соединение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) - это комплекс физико-химических и биохимических превращений, которым подвергаются лекарственные вещества в организме. В результате образуются метаболиты (водорастворимые вещества), которые легко выводятся из организма.

В результате биотрансформации вещества приобретают большой заряд (становятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечёт за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям:

  • а) снижение растворимости препаратов в жирах и
  • б) снижение их биологической активности.

Этапы метаболизма:

  • 1. Гидроксилирование.
  • 2. Диметилирование.
  • 3. Окисление.
  • 4. Образование сульфоксидов.

Выделяют два типа метаболизма лекарственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстановление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетические реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъюгация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на центральную нервную систему и резко возрастает частота развития энцефалопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и переносимость одних и тех же лекарственных веществ у различных животных неодинакова. Эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствительности организма к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наследственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Элиминация. Различают несколько путей выведения (экскреции) лекарственных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слёзными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он концентрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приёма препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для абсорбции в кишечнике (например, неомицин). Под влиянием ферментов и бактериальной микрофлоры желудочно-кишечного тракта лекарственные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному транспорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарственные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через лёгкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ молоком. Лекарственные вещества, содержащиеся в плазме лактирующих животных, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элиминацию. Однако иногда лекарственные средства, попадающие в организм детеныша, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного вещества из организма. Термином «почечный клиренс креатинина» определяют выведение эндогенного креатинина из плазмы. Большинство лекарственных веществ элиминируется либо через почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и почечного клиренса, причём печёночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

Фармакокинетика

Фармакокинетика - это раздел фармакологии (греч. pharmakon - лекарство и kinetikos - относящийся к движению), изучающий закономерности абсорбции, распределения, превращения (биотрансформации) и экскреции (элиминации) лекарственных веществ в организме человека и животных.

Абсорбция - всасывание лекарственного препарата. Введенное лекарство переходит из места введения (например, желудочно-кишечный тракт, мышца) в кровь, которая разносит его по организму и доставляет в различные ткани органов и систем. Скорость и полнота всасывания характеризуют биодоступность лекарства (параметр фармакокинетики, показывающий, какая часть лекарства достигла системного кровотока). Естественно, что при внутривенном и внутриартериальном введении лекарственное вещество попадает в кровоток сразу и полностью, и его биодоступность составляет 100%.

При всасывании лекарство должно пройти через клеточные мембраны кожи, слизистых оболочек, стенок капилляров, клеточных и субклеточных структур.

В зависимости от свойств лекарства и барьеров, через которые оно проникает, а также способа введения все механизмы всасывания можно разделить на четыре основных вида: диффузия (проникновение молекул за счет теплового движения), фильтрация (прохождение молекул через поры под действием давления), активный транспорт (перенос с затратами энергии) и осмос, при котором молекула лекарства как бы продавливается через оболочку мембраны. Эти же механизмы транспорта через мембраны участвуют в распределении лекарств в организме, и при их выведении.

Распределение - проникновение лекарственного средства в различные органы, ткани и жидкости организма. От распределения лекарства в организме зависит скорость наступления фармакологического эффекта, его интенсивность и продолжительность. Для того чтобы начать действовать, лекарственное вещество должно сконцентрироваться в нужном месте в достаточном количестве и оставаться там длительное время.

В большинстве случаев лекарство распределяется в организме неравномерно, в различных тканях его концентрации отличаются в 10 и более раз. Неравномерное распределение лекарственного препарата в тканях обусловлено различиями в проницаемости биологических барьеров, интенсивности кровоснабжения тканей и органов. Клеточные мембраны - главное препятствие на пути молекул лекарственного вещества к месту действия. Различные ткани человека обладают набором мембран с различной “пропускной способностью”. Легче всего преодолеваются стенки капилляров, самые труднопреодолимые барьеры между кровью и тканями мозга - гематоэнцефалический барьер и между кровью матери и плода - плацентарный барьер.

В сосудистом русле лекарственное вещество в большей или меньшей степени связывается с белками плазмы. Комплексы “белок + лекарство” не способны “протиснуться” сквозь стенку капилляра. Как правило, связывание с белками плазмы крови носит обратимый характер и ведет к замедлению наступления эффекта и увеличению продолжительности действия лекарств.

Неравномерность распределения лекарства в организме часто вызывает побочные действия. Необходимо научиться управлять распределением лекарств в человеческом организме. Находить лекарственные вещества, способные избирательно накапливаться в определенных тканях. Создавать лекарственные формы, высвобождающие лекарство там, где необходимо его действие.

Метаболизм - биотрансформация лекарственного средства с образованием одного или нескольких метаболитов.

Часть лекарственных средств действует в организме и выводится в неизмененном виде, а часть подвергается в организме биотрансформации. В биотрансформации лекарственных веществ в организме человека и животных принимают участие различные органы и ткани - печень, легкие, кожа, почки, плацента. Наиболее активно процессы биотрансформации лекарственных средств протекают в печени, что связано с выполнением этим органом детоксикационной, барьерной и экскреторной функций.

Можно выделить два основных направления биотрансформации лекарственных веществ - метаболическую трансформацию и конъюгацию.

Под метаболической трансформацией понимают окисление, восстановление или гидролиз поступившего лекарственного вещества микросомальными оксидазами печени либо других органов.

Под конъюгацией понимают биохимический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам различного рода химических группировок или молекул эндогенных соединений.

При описанных процессах лекарственные средства, поступающие в организм, превращаются в более водорастворимые соединения. Это, с одной стороны, может привести к изменению активности, а с другой к выведению этих веществ из организма.

В результате метаболической трансформации и конъюгации лекарственные средства обычно изменяются, либо же совсем лишаются своей фармакологической активности.

Метаболизм или биотрансформация лекарственного препарата часто приводит к превращению жирорастворимых веществ в полярные и наконец, водорастворимые. Эти метаболиты в меньшей степени биологически активны, а биотрансформация облегчает их экскрецию с мочой или желчью.

Экскреция - выведение лекарств из организма после того, как они частично или полностью превращаются в водорастворимые метаболиты (некоторые препараты экскретируются в неизмененном виде); экскреция лекарств осуществляется с мочой, желчью, выдыхаемым воздухом, потом, молоком, калом, со слюной.

Экскреция лекарств кишечная - выведение лекарств сначала с желчью, а затем с калом.

Экскреция лекарств легочная - выведение лекарств через легкие, преимущественно средств для ингаляционного наркоза.

Экскреция лекарств почечная - основной путь экскреции лекарств; зависит от величины почечного клиренса, концентрации лекарства в крови, степени связывания препарата с белками.

Экскреция лекарств с грудным молоком - выделение лекарств во время лактации с молоком (снотворные, анальгетики, фенилин, амиодорон, ацетилсалициловая кислота, соталол, этиловый спирт).

Большинство лекарственных веществ или растворимых в воде метаболитов жирорастворимых веществ выделяются почками. Водорастворимые вещества, находящиеся в крови, могут выделяться с мочой путем пассивной клубочковой фильтрации, активной канальцевой секреции или путем блокады активной, или чаще пассивной канальцевой реабсорбции.

Фильтрация - основной механизм экскреции почками лекарств, не связанных с белками плазмы крови. В связи с этим в фармакокинетике элиминирующую функцию почек оценивают по скорости именно этого процесса.

Фильтрация лекарств в клубочках осуществляется пассивно. Молекулярная масса веществ не должна быть больше 5-10 тыс, они не должны быть связаны с белками плазмы крови.

Секреция - процесс активный (с затратой энергии при участии специальных транспортных систем), не зависящий от связывания препаратов с белками плазмы крови. Реабсорбция глюкозы, аминокислот, катионов и анионов происходит активно, а жирорастворимых веществ - пассивно.

Способность почек к выведению лекарств путем фильтрации проверяется по экскреции эндогенного креатинина, так как оба процесса происходят параллельно с одинаковой скоростью.

При почечной недостаточности корректировку режима дозирования осуществляют с помощью расчета клиренса эндогенного креатинина (С/кр). Клиренс - это гипотетический объем плазмы крови, который полностью очищается от лекарственного средства за единицу времени. В норме клиренс эндогенного креатинина составляет 80-120 мл/мин. Кроме того, для определения клиренса эндогенного креатинина существуют специальные номограммы. Они составлены с учетом уровня креатинина в сыворотке крови, массы тела и роста больного.

Количественно элиминацию ксенобиотика можно оценить и с помощью коэффициента элиминации. Он отражает ту часть (в процентах) лекарственного вещества, на которую происходит уменьшение его концентрации в организме в единицу времени (чаще за сутки).

Связь между объемом распределения и клиренсом вещества выражается периодом полувыведения (T1/2). Период полувыведения вещества - это время, за которое концентрация его в плазме крови снижается наполовину.

Основная задача фармакокинетики заключается в выявлении связей между концентрацией лекарственного средства или его метаболита (метаболитов) в биологических жидкостях и тканях и фармакологическим эффектом.

Все количественные и качественные процессы входят в понятие первичной фармакологической реакции. Обычно она протекает скрыто и проявляется в виде клинически диагностируемых реакций организма или, как их принято называть, фармакологических эффектов, обусловленных физиологическими свойствами клеток, органов и систем. Каждый эффект лекарства, как правило, по времени можно разделить на латентный период, время максимального лечебного эффекта и его продолжительность. Каждый из этапов обусловлен рядом биологических процессов. Так, латентный период определяется в основном путем введения, скоростью всасывания и распределения вещества по органам и тканям, в меньшей степени -- его скоростью биотрансформации и экскреции. Продолжительность эффекта обусловлена преимущественно скоростью инактивации и выделения. Определенное значение имеют перераспределение действующего агента между местами действия и депонирования, фармакологические реакции и развитие толерантности. В большинстве случаев с увеличением дозы лекарства уменьшается латентный период, увеличиваются эффект и его продолжительность. Удобно и практически важно выражать продолжительность лечебного действия полупериодом снижения эффекта. Если полупериод совпадает с концентрацией вещества в плазме, получают объективный критерий для контроля и направленной регуляции терапевтической активности. Фармакодинамика и фармакокинетика лекарств усложняется при различных патологических состояниях. Каждое заболевание как бы по-своему моделирует фармакологический эффект, в случае нескольких заболеваний картина еще более усложняется.

Конечно, при поражении печени преимущественно нарушается биотрансформация лекарств; болезни почек, как правило, сопровождаются замедлением экскреции ксенобиотика. Однако такие однозначные фармакокинетические модуляции наблюдаются редко, чаще фармакокинетические сдвиги переплетаются со сложными фармакодинамическими изменениями. Тогда не только при одном заболевании повышается или понижается действие лекарства, но в течение заболевания отмечаются существенные колебания, обусловленные как динамикой самого патологического процесса, так и применяемыми в процессе лечения средствами.

Фармакокинетика
этапы фармакокинетического
процесса
Лекция 2
курс «Фармакология»

Фармакокинетика – изучение закономерностей абсорбции, распределения, превращения и экскреции ЛС в организме

другими словами:
Что происходит с лекарственным веществом в организме
или
Как организм влияем на лекарственное вещество

Этапы фармакокинетического процесса
0. Высвобождение ЛС из лекарственной формы
I. Всасывание (абсорбция, лат. absorbeo – поглощать)
– процесс перехода ЛВ через биологические мембраны
II. Распределение ЛВ в организме
III. Биотрансформация ЛВ (метаболизм + конъюгация)
IV. Выведение ЛВ из организма (элиминация)

Why drugs fail???

Всасывание (абсорбция)

Всасывание (абсорбция)
Процесс перехода ЛВ через биологические мембраны
Клеточная мембрана: Проницаема для многих
лекарственных молекул в зависимости от их
липофильности. Небольшие поры (8 А),
проницаемые для малых молекул (алкоголь, вода).
Стенка капилляра: Поры между клетками
больше, чем молекул лекарств, поэтому
проницаемость высокая вне зависимости от
липофильности
Гематоэнцефалический барьер: Нет пор,
скорость определяется липофильностью молекул
Плацентарный барьер: очень хорошо
проницаем для липофильных молекул

Виды трансмембранного транспорта ЛВ:

1. Пассивная диффузия
2. Облегченная диффузия
3. Активный транспорт
4. Эндоцитоз.

Пассивная диффузия

1.
Направление и скорость определяется разностью концентраций
вещества по обе стороны.
2.
Процесс идет от высокой концентрации к низкой до
термодинамического равновесия.
3.
Характерен для большинства ЛВ (слабые кислоты, основания,
органические неэлектролиты).
4.
Для успешной диффузии важно свойство ЛВ растворяться в липидах:
неионизированная форма (молекулярная, недиссоциированная) ЛВ.
Скорость диффузии определяется законом Фика:
Где: U – скорость диффузии
S – площадь поверхности, через которую проходит вещество
С – концентрация вещества.

Пассивная диффузия

Электролиты в растворе: ионизированная форма +
неионизированная форма
сл. кислота
НА ↔ Н+ + А-
(НА – молекулярная форма, А- – анион)
сл. основание КОН ↔ ОН- + К+ (КОН – молекулярная форма, К+ –
катион)
Отношение [А- ]/ [НА] зависит от рН, можно найти по уравнению
ХендерсонаХассельбальха
для сл.кислот рН = рКа + lg [А- ] / [НА ]
Правило:
Если ЛВ – сл. кислота, то при сдвиге рН в кислую сторону транспорт через биомембраны
усиливается, при сдвиге рН в щелочную сторону – ослабляется.
Если ЛВ – сл. основание, то при сдвиге рН в щелочную сторону транспорт через
биомембраны усиливается, при сдвиге рН в кислую сторону – ослабляется.

Облегченная диффузия

Механизм для крупных ЛВ, ЛВ, плохо растворимых в липидах
(пептиды, аминокислоты, витамины и др.);

2. Зависит концентрации веществ по обе стороны мембраны
3. Чаще направлен в одну сторону
4. Не требует затрат энергии

Активный транспорт

Механизм для определенных специфических веществ ЛВ, плохо
растворимых в липидах (витамины, глюкоза);
1. Для этих ЛВ существуют специфические молекулы – переносчики.
2. Не зависит концентрации веществ по обе стороны мембраны
3. Чаще направлен в одну сторону, независимо от градиента
концентрации
4. Требует затрат энергии

Эндоцитоз (пиноцитоз)

Механизм для очень крупных молекул (Д > 750 нм):
белки, гоормоны, жирорастворимые витамины, системы адресной
доставки ЛВ – липосомы, нанотрубки и др.
Очень важное значение при таргетированной терапии опухолей

Парацеллюлярный транспорт

Фильтрация гидрофильных молекул – через межклеточные
промежутки.
Между эпителиальными клетками кишечника и дыхательных путей
промежутки малы (транспорт гидрофильных ЛВ невелик).
Между эндотелиальными
клетками сосудов скелетных
мышц, внутренних органов
промежутки 2 нм и более
(транспорт значителен).
В головном мозге – ГЭБ –
препятствует проникновению
гидрофильных полярных ЛВ.

Биодоступность

количество ЛВ, попавшее в системный кровоток
Как правило, биодоступность определяют для ЛВ
с энтеральными путями введения – внутрь, ректально, сублингвально
Высокая биодоступность = хорошая абсорбция +
слабый метаболизм в печени

Абсолютная биодоступность

это отношение биодоступности, определенной в виде
площади под кривой «концентрация-время» (ППК)
активного лекарственного вещества в системном
кровотоке после введения путём, иным, чем
внутривенный (перорально, ректально, чрезкожно,
подкожно), к биодоступности того же самого
лекарственного вещества, достигнутой после
внутривенного введения.

Относительная биодоступность

это ППК определенного лекарства, сравнимая с другой
рецептурной формой этого же лекарства, принятой за
стандарт, или введенной в организм другим путём.
Когда стандарт представляет внутривенно введенный
препарат, мы имеем дело с абсолютной
биодоступностью.

III этап. Распределение ЛВ

III этап. Распределение ЛВ

1. Связывание с белками плазмы
(альбумины, частично α- и βглобулины)
и эритроцитами за счет
электростатических сил и
водородного взаимодействия;
2. Поступление во внеклеточное
пространство;
3. Избирательное накопление в
определенных органах или
тканях.
Плазма крови
Внеклеточная
жидкость
Внутриклеточная
жидкость

Распределение ЛВ в организме

Связывание ЛВ с белками плазмы

ЛВ кислоты (напр., барбитураты)
связываются с альбуминами
ЛВ основания (напр., опиоиды, местные
анестетики) связываются с кислыми
гликопротеинами Альфа 1
Процесс связывания обратим
Места связывания неспецифичны для
разных ЛВ и они могут вытеснять друг
друга (конкурировать)

III этап. Распределение ЛВ

Связывание – в основном неспецифическое
(специфические белки: транскобаломин (B12), трансферрин (Fe), церулоплазмин
(Cu),
транспортные белки для гормонов).
В связанном состоянии находится часть молекул ЛВ (40-98%)
Молекулы ЛВ, связанные с белками, не оказывают фармакологического
действия.
Следствия:
а) Гипопротеинемия (гепатит, белковое голодание) – связывание ↓, свободная
фракция ,
эффективность , вероятность токсического действия .
б) между разными ЛВ возможна конкуренция за участки связывания с белками
плазмы,
эффективность одного из двух ЛВ , вероятность токсического действия .
Напр., сульфаниламиды вытесняют пенициллины → эффект пенициллинов ,
сульфаниламиды вытесняют антидиабетические средства →
гипергликемия
сульфаниламиды вытесняют непрямые антикоагулянты → кровотечение.

Концентрация ЛВ при распределении по организму

Цель: превращение липофильных ЛВ в гидрофильные (полярные)
вещества.
Органы биотрансформации:
Печень
Почки
Кожа
Легкие
Кишечник
Плацента

IV этап. Биотрансформация метаболизм ЛВ с целью последующего удаления из организма

Печень

Гепатоцит

IV этап. Биотрансформация

В печени – 2 фазы (как правило):
1-я фаза – преконьюгации (несинтетические р-ции) – это
окислительно-восстановительные реакции с участием
системы ферментов – микросомальных оксидаз
(монооксигеназ) – обеспечивают окислительное
гидроксилирование:
R − H + НАДФH + H+
+ O2 → R − OH + НАДФ+ + H2O
В реакции участвуют цитохром Р-450 (гемопротеин),
связывающий ЛВ и O2 в
своем активном центре и НАДФН (донор электронов).

Типы реакций микросомального окисления

Ароматическое гидроксилирование: R − С6H5 → R − C6H4 − OH
Алифатическое гидроксилирование: R − СH3 → R − CH2 − OH
О-дезалкилирование:
R − О − СH3 → R − О − CH2OH → R − OH + HCHO
N-дезалкилироание:
R − СH2 − N(CH3)2 → R − NH − CH3 + HCHO → R − NHH + HCHO
S-дезалкилирование:
R − СH2 − S − CH3 → R − CH2 − SH − HCHO
Сульфоокисление:
R − S − R1
Дезаминирование:
→ R − SO − R1 + H2
2R = CHNH2 → 2R = C(OH) − NH2 → 2R = C = O + NH3
Основные изоферменты цитохрома Р-450 (всего > 1000):
CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5

Примеры химических реакций метаболизма ЛВ

Немикросомальные реакции (ферменты в цитозоле, митохондриях, лизосомах, цитоплазматических мембранах)

1.
Гидролиз с участием ферментов: эстераз, амидаз, фосфатаз – в
плазме крови и тканях (печень) с разрывом эфирных, амидных и
фосфатных связей в молекулах ЛВ. Гидролизу подвергаются сложные
эфиры (аспирин, прокаин), амиды (прокаинамид), гидразиды.
2. Окислительное дезаминирование с помощью МАО (адреналин,
норадреналин).
3. Окисление спиртов с участием алкогольдегидрогеназы.
4. Окисление альдегидов с участием ксантиноксидазы.
5. Восстановление ЛВ (присоединение атома водорода или удаление атома
кислорода) может протекать с участием микросомальных (левомицетин) и
немикросомальных (хлоралгидрат) ферментов.

Примеры химических реакций метаболизма ЛВ (гидролиз)

Результаты преконьюгации:

1. Утрата фармакологической активности и снижение
токсичности;
2. Приобретение новых свойств;
3. Неактивное вещество (пролекарство) становится активным
(эналаприл);
4. Приобретение токсичности (летальный синтез), напр.,
парацетамол окисляется в токсичный N-ацетил-парабензохинонимина (инактивируется глутатионом, дефицит
которого ведет к токсическому гепатиту).
Главный итог преконьюгации:
Липофильность ↓, полярность (гидрофильность)

Результаты преконьюгации:

С 1898 по 1910 год героин назначался в качестве замены
морфина, не вызывающей зависимости, и как лекарство от
кашля для детей.
В 1910 году стало известно, что в результате биотрансформации
в печени героин превращается в морфин.

2-я фаза – коньюгации (биосинтетическая трансформация) Процесс связывания модифицированных ЛВ с эндогенными субстратами

(присоединение к амино- , гидроксильным,
карбоксильным группам ЛВ и их метаболитов при участии трансфераз
микросом или цитозоля)
Основные реакции коньюгации:
Глюкуронирование – реакция с глюкуроновой кислотой с образованием
глюкуронидов при участии микросомального фермента – уридилдифосфатглюкуронилтрансферазы (цитохром Р-450-содержащий фермент);
Сульфатная коньюгация – реакция с активной формой сульфата;
Глициновая коньюгация – реакция с глицином;
Глютатионовая коньюгация – реакция с участием глютатионтрансфераз печени.
Ацетилирование – присоединение ацетильного остатка;
Метилирование – реакция при участии донора метильной группы –
S-аденозилметионина.

Реакции конъюгации

Конъюгация ЛВ или метаболита с глюкуроновой
кислотой (ГК) – имеет максимальное значение;
Она происходит, когда ГК находится в активном
состоянии, т.е. связана с уридиндифосфатом;
микросомальная глюкуронилтрансфераза
взаимодействуя с этим комплексом, переносит
ГК на акцепторную молекулу.
Если акцепторная молекула присоединяет ГК по
своей фенольной, спиртовой или карбоксильной
группе, то образуется глюкуронид.
Если акцепторная молекула – амид, может
образоваться N-глюкуронид.
Сульфотрансферазы, находящиеся в цитоплазме,
переносят активированные серные кислоты
(3‘-фосфоаденин- 5‘-фосфосульфат) на спирты и
Фенолы. Продуктом является кислота.

Итог 2-ой фазы (коньюгации):

Образование высокополярных гидрофильных соединений, менее активных
и токсичных, которые выводятся почками или с желчью.
Особенности:
1. ЛВ-активаторы микросомального окисления (индукция синтеза Р-450)
(тестостерон, фенобарбитал) активируют метаболизм других ЛВ
2. ЛВ-ингибиторы биотрансформации (подавление транспорта электронов
(хлорид Со), повреждение мембран (тетрахлорметан), блокирование
синтеза белка (левомицетин) → эффективная концентрация →
токсический эффект.

V этап. Экскреция (выведение ЛВ и продуктов их биотрансформации) органы выделения: почки, легкие, кожа, кишечник, печень,

слюнные,
сальные, потовые, слезные, молочные железы

Экскреция ЛВ

Экскреция ЛВ

Общий вид и строение почки:
1 - общий вид левой почки человека; 2 - надпочечник; 3 - ворота почки; 4 - почечная артерия;
5 - почечная вена; 6 - мочеточник; 7 - разрез через почку; 8 - почечная лоханка; 9 - корковое вещество
почки; 10 - мозговое вещество почки.

Мальпигиев клубочек
1 - Приносящая артерия. 2 - Капсула.
3 - Полость капсулы. 4 - Капилляры.
5 - Выносящая артерия нефрона.
Мочеобразование в нефроне
11 - дуговая артерия; 12 - дуговая вена; 13 - приносящая артериола; 14 - выносящая артериола;
15 - почечный клубочек; 16 - прямые артерии и вены; 17 - проксимальный извитой каналец;
18 - проксимальный прямой каналец; 19 - тонкий нисходящий отдел петли Генле; 20 - тонкий восходящий
отдел петли Генле; 21 - толстый восходящий отдел петли Генле; 22 - дистальный извитой каналец;
23 - собирательная трубка; 24 - выводной проток.

Ультраструктура клетки проксимального (слева) и дистального (справа) отделов нефрона:
1 - просвет канальца; 2 - щёточная каёмка; 3 - митохондрия; 4 - складка базальной
плазматической мембраны; 5 - базальная мембрана.

Почечная экскреция: 3 процесса

1. Клубочковая фильтрация:
через межклеточные промежутки эндотелия
Капилляров почечных канальцев в просвет почечных
Канальцев (все ЛВ и метаболиты, не связанные
с белком);
2. Канальцевая секреция:
из плазмы крови через эпителиальные клетки
Проксимальных канальцев при участии транспортных
систем: для органических кислот(салицилаты, СФА,
пенициллины), оснований (КХА, морфин), глюкуронидов,
сульфатов. Конкуренция за транспортные системы.
Эффективное выведение ЛВ и метаболитов, связанных
с белком.
3. Канальцевая реабсорбция:
из просвета канальцев через мембраны эпителиальных
Клеток по градиенту концентраций (липофильные ЛВ и
метаболиты; гидрофильные ЛВ не реабсорбируются).
Реабсорбция аминокислот, глюкозы и др. в дистальных
канальцах путем активного транспорта.
рН мочи 4,5-8. В кислой среде активная экскреция
слабых оснований (димедрол, эуфиллин), в
щелочной – слабых кислот (барбитураты).
Для сдвига рН в кислую сторону применяют
аммония хлорид, в щелочную – натрия гидрокарбонат
(в/в) и др.

Кишечная экскреция:

Из гепатоцитов в желчь путем активного транспорта ЛВ поступают в неизменном виде
(пенициллины, тетрациклины, дигоксин) или в виде метаболитов или коньюгатов (морфин с
глюкуроновой к-той).
Ряд ЛВ подвергаются кишечно-печеночной циркуляции (дигитоксин, эритромицин) →
пролонгированное действие.
Не всасывающиеся ЛВ выводятся в неизменном виде (нистатин).
Легочная экскреция:
Газообразные и летучие ЛВ (эфир для наркоза, метаболиты этанола)
Экскреция потовыми, слюнными, бронхиальными железами:
Пенициллины, калия йодид, натрия йодид
Экскреция железами желудка и кишечника:
Слабые органические кислоты, хинин
Экскреция слезными железами:
Рифампицин
Экскреция молочными железами:
Барбитураты, аспирин, кофеин, никотин
рН крови = 7,4, рН грудного молока = 6,5; слабые основания (морфин, бензотиазепины)
накапливаются в молоке и при кормлении попадают в организм ребенка

Количественные параметры элиминации

Элиминация = биотрансформация + экскреция
Константа скорости элиминации – (коэффициент элиминации) 1-го порядка –
ke1(ke) – доля ЛВ, элиминируемого из организма в ед. времени (мин-1, ч-1);
Элиминация ЛВ с кинетикой 0-го порядка – скорость элиминации не зависит
от концентрации ЛВ в плазме и является постоянной (мг∙ ч-1) (этанол);
Период полуэлиминации (t1/2) – время, за которое концентрация ЛВ в плазме
снижается на 50%.
1-й период – удаление 50% введенной дозы,
2-й период – удаление 75% введенной дозы,
за 3,3 периода – удаление 90% введенной дозы.

Период полуэлиминации

Период полуэлиминации Ахиллес и черепаха

Клиренс лекарственных средств (Cl)

Клиренс (англ. clearence - очищение) - показатель скорости очищения плазмы крови, других сред
или тканей организма, т.е. это объем плазмы, полностью очищающийся от данного вещества за
единицу времени:
Clmet – метаболический (за счет биотрансформации)(печеночный)
Clexcr – экскреторный (почечный)
Clexcr – общий (системный).
Clt (Ctotal) = Clmet + Clexcr
Clt = Vd ke1, т.е. системный клиренс равен объему (Vd)распределения, освобождаемому
от ЛВ в ед. времени (мл/мин, л/ч)
Clt = скорость элиминации ЛВ/С (т.е. клиренс прямо пропорционален скорости элиминации ЛВ и
обратно пропорционален его концентрации в биологической жидкости)
Почечный клиренс = объем плазмы крови, освобождаемый от ЛВ в единицу времени
Clren = Cu Vu / Cp,
где Cu - концентрация вещества в моче;
Vu - скорость мочеотделения;
Cp - концентрация вещества в плазме.
Цель – подбор интервалов между введениями ЛВ

Фармакокинетика лекарств

Клиренс ЛВ

Определение поддерживающей дозы (Dп)
препарата, необходимой для создания
постоянной концентрации ЛВ в крови
Dп(мг/ч) = Tконц (мг/л) x клиренс (л/ч)

Всасывание (абсорбция) - есть преодоление барьеров, разделяющих место введения лекарства и кровяное русло.

Для каждого лекарственного вещества определяется специальный показатель – биодоступность . Она выражается в процентах и характеризует скорость и степень всасывания ЛС с места введения в системный кровоток и накопление в крови в терапевтической концентрации.

В фармакокинетике лекарственных препаратов выделяют четыре основных этапа.

Этап - всасывание.

В основе всасывания лежат следующие основные механизмы:

1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Интенсивность и полнота всасывания прямо пропорциональны липофильности, то есть, чем больше липофильность, тем выше способность вещества всасываться.

2. Фильтрация через поры клеточных мембран. Этот механизм задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

3. Активный транспорт обычно осуществляется с помощью специальных транспортных систем, идет с затратой энергии, против градиента концентрации.

4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

Этап - распределение.

После попадания лекарственного вещества в кровь, оно разносится по всему организму и распределяется в соответствии со своими физико-химическими и биологическими свойствами.

В организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани: гематоэнцефалический (ГЭБ), гематоплацентарный (ГПБ), гематоофтальмологический (ГОБ) барьеры.

3 этап - метаболизм (превращение). Существуют два основных пути метаболизма лекарственных веществ:

ü биотрансформация , происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

ü конъюгация , при которой происходит присоединение к молекуле вещества остатков других молекул, с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

Эти процессы влекут за собой инактивацию или разрушение лекарственных веществ (детоксикацию), образование менее активных соединений, гидрофильных и легко выводимых из организма.

В ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством , превращающимся в лекарство только в организме.

Главная роль в биотрансформации принадлежит микросомальным ферментам печени.

4 этап - выведение (экскреция) . Лекарственные вещества через определенное время выводятся из организма в неизмененном виде или в виде метаболитов.

Гидрофильные вещества выделяются почками. Таким способом выделяется большинство ЛС.

Многие липофильные лекарственные вещества выводятся через печень в составе желчи, поступающей в кишечник. Выделившиеся в кишечник с желчью ЛС и их метаболиты могут выделиться с калом, повторно всосаться в кровь и снова через печень выделится с желчью в кишечник (энтерогепатическая циркуляция).

Лекарственные вещества могут выводиться через потовые и сальные железы (йод, бром, салицилаты). Летучие лекарственные вещества выделяются через легкие с выдыхаемым воздухом. Молочные железы выделяют с молоком различные соединения (снотворные, спирт, антибиотики, сульфаниламиды), что следует учитывать при назначении лекарственного средства кормящим женщинам.

Элиминация - процесс освобождения организма от лекарственного вещества в результате инактивации и выведения.

Общий клиренс ЛС (от англ. сlearance – очистка) – объем плазмы крови, очищаемый от ЛС за единицу времени (мл/мин) за счет выведения почками, печенью и другими путями.

Период полувыведения (Т 0,5) – время, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза.

Фармакодинамика

изучает локализацию, механизмы действия ЛС, а также изменения в деятельности органов и систем организма под влиянием лекарственного вещества, т.е. фармакологические эффекты.

Механизмы действия ЛС

Фармакологический эффект - воздействие лекарственного вещества на организм, вызывающее изменения в деятельности определенных органов, тканей и систем (усиление работы сердца, устранение спазма бронхов, понижение или повышение артериального давления и т.д.).

Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

Лекарственные вещества взаимодействуют со специфическими рецепторами клеточных мембран, через которые осуществляется регуляция деятельности органов и систем. Рецепторы – это активные участки макромолекул, с которыми специфически взаимодействуют медиаторы или гормоны.

Для характеристики связывания вещества с рецептором используется термин аффинитет.

Аффинитет определяется как способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор».

Лекарственные вещества, стимулирующие (возбуждающие) эти рецепторы и вызывающие такие эффекты, как и эндогенные вещества (медиаторы), получили название миметиков, стимуляторов или агонистов . Агонисты благодаря сходству с естественными медиаторами стимулируют рецепторы, но действуют более продолжительно в связи с их большей устойчивостью к разрушению.

Вещества, связывающиеся с рецепторами и препятствующие действию эндогенных веществ (нейромедиаторов, гормонов) называются блокаторами, ингибиторами или антагонистами.

Во многих случаях действие ЛС связано с их влияниями на ферментные системы или отдельные ферменты;

Иногда лекарственные средства угнетают транспорт ионов через клеточные мембраны или стабилизируют клеточные мембраны.

Ряд веществ влияют на метаболические процессы внутри клетки, а также проявляют другие механизмы действия.

Фармакологическая активность ЛС – способность вещества или комбинации нескольких веществ изменять состояние и функции живого организма.

Эффективность ЛС – характеристика степени положительного влияния ЛС на течение или продолжительность заболевания, предотвращение беременности, реабилитацию больных путем внутреннего или внешнего применения.